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ABSTRACT
A wide range of evaluation metrics have been proposed to measure
the quality of search results, including in the presence of diversifica-
tion. Some of thesemetrics have been adapted for use in search tasks
with different complexities, such as where the search system returns
lists of different lengths. Given the range of requirements, it can
be difficult to compare the behavior of these metrics. In this work,
we examine effectiveness metrics using a simple property-based
approach. In particular, we present a case-analysis framework to
define and study fundamental properties that seem integral to any
evaluation metric. An example of a simple property is that a ranking
with only one non-relevant document should never score lower
than a ranking with two non-relevant documents. The framework
facilitates quantifying the ability of metrics to satisfy properties,
both separately and simultaneously, and to identify those cases
where properties are violated. Our analysis shows that the Average
Cube Test and Intent-Aware Average Precision are two metrics
which fail to satisfy the desirable properties, and hence should be
used with caution.
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1 INTRODUCTION
Awide range of evaluation metrics have been proposed, all with the
goal of comparing and benchmarking IR systems. Given a search
task, understanding the behavior of metrics is critical to a decision
as to which of them is suitable to the task. Metrics can usually be
categorized in terms of assumptions about users and systems. For
instance, a common practice when defining a metric is to calculate
the system performance at some cutoff k in the ranking, assuming
that the user would have stopped inspecting documents at or before
position k . However, the ranking returned by the system might be
truncated, that is, of length l < k , perhaps as a result of the system
finding fewer than k matching documents, or the collection having
less than k relevant documents, or perhaps even as a requirement
of the search task.

Ideally, a metric aims to measure a set of desirable properties
associated with a given search task, and the metric score should
reflect the level of attainment reached by the system in respect
to those properties, based on the system’s outputs. In this work,
we introduce a framework that allows us to analyze metrics that
may be applied to search tasks with two characteristics: diver-
sified (or faceted) queries, and truncated rankings. Search result
diversification aims to tackle query ambiguity and under-specified
information needs. For ambiguous queries, we need to diversify
results to satisfy the different possible interpretations or intents
of users (for example, apple as fruit versus apple as a company),
and for under-specified queries we may wish to provide shallow
coverage of all of the possible interpretations. Consequently, many
evaluation metrics have been proposed to benchmark diversifica-
tion algorithms, for the most part as extended versions of metrics
used for ad hoc evaluation. Indeed, some evaluation frameworks
such as the Intent-Aware approach [1] and the D# mechanism [23]
instantiate a diversity metric from any uni-dimensional ad hoc
retrieval metric.

Evaluation metrics are typically studied using empirical ap-
proaches. One such option is to determine how closely a metric
matches the behavior or preferences of users across a set of search
systems [26]. However, this type of study is time and resource con-
suming. Another option is to use discrimination power analysis –
performing statistical significance tests for a large number of sys-
tem pairs, and calculating the percentage that result in (according
to that particular metric) statistically significant differences [22].
Metrics with high discriminative power are considered superior,
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on the purely pragmatic basis that they are more likely to lead to
a reportable system comparison. Generally, both approaches are
somewhat inscrutable, and do not tell us much about the particular
behavior of the different metrics being considered. In addition, the
findings of these approaches are dependent on the ground truths
and search systems (runs) used in the experimental setup.

A recent and complementary proposal is the use of axiomatic
analysis, where a set of fundamental and desirable properties are
defined, andmetrics are categorized in terms of whether they satisfy
the properties or not [3, 4]. For instance, the replacement property of
Ferrante et al. [13] states that if a less relevant document is replaced
by a more relevant document, then the metric score should not
decrease. Different axiomatic frameworks have been proposed in
connectionwith retrievalmodels [12, 14], and to evaluate evaluation
metrics [2, 13]. Moffat [18] provides an alternative taxonomy, based
on numerical properties, and shows that metrics can be categorized
according to which of the properties (in this work, a set of seven)
they satisfy. Amigó et al. [5] proposed several formal constraints
(or desirable properties) for diversity metrics. In this work, we also
employ the idea of desirable property to study metrics designed to
evaluate diversified and truncated rankings.

In contrast to prior research, our focus is to instantiate desirable
properties of metrics in a case-analysis framework that allows
researchers to quantify the ability of metrics to satisfy a certain
property (or multiple properties simultaneously).

The remainder of the paper is organized as follows. Section 2
introduces the most commonly used evaluation metrics, and then
Section 3 describes the proposed framework. We firstly define de-
sirable properties of evaluation metrics and then explore their rela-
tionship with a range of actual metrics. In Section 4, we instantiate
our framework on three sets of evaluation metrics that have been
used in both ad hoc and diversified retrieval benchmarks, such as
the TREC’s Dynamic Domain [28] and Web [10] tracks. We discuss
the implications and limitations of our findings in Section 5. Finally,
Section 6 concludes the work.

2 BACKGROUND
We now describe the most commonly used evaluation metrics for
ad hoc, diversified, and truncated rankings.

AdHoc Search. Early in the development of information retrieval,
the focus of evaluation was on the system’s ability to find available
relevant information, and its accuracy; the set-based Recall (R) and
Precision (P) metrics quantify these two aspects, respectively. For
ranked output lists, P and R can be parameterized with a depth k ,
resulting in P@k and R@k . However, P@k and R@k do not consider
the position of relevant documents within the first k ranks. Average
Precision (AP) builds on these metrics by averaging P@i at each
rank position i where a relevant document is returned, and normal-
izing by the total number of available relevant documents; overall
this reflects the system’s ability to retrieve relevant documents
towards the top of the ranking. Another approach that also does
this is Reciprocal Rank (RR), which can be regarded as modeling
the actions of a user who is fully satisfied as soon as any single
relevant document is found.

None of these metrics accommodate the degree to which a docu-
ment is relevant to an information need. To tackle this, gain-based

graded relevance approaches incorporate the system’s ability to
place highly relevant documents at or near the top of the ranking.
In particular, Normalized Discounted Cumulative Gain (NDCG) [15]
is now in wide use. Chapelle et al. [6] extended RR into Expected
Reciprocal Rank (ERR) to handle graded relevance, via the assump-
tion of a probabilistic user, following the example of Moffat and
Zobel’s Rank-Biased Precision (RBP) metric [19].

A shared aspect of many previous metrics is that document
rankings are evaluated at a fixed depth k , and different values of k
of necessity lead to different and incomparable metrics. Instead of
using a cutoff k , Rank-Biased Precision (RBP) [19] uses a converging
sequence of weights, and in doing so allows “evaluation at depth
k” to be a useful (and converging) approximation of “evaluation at
an arbitrary depth”. In particular, RBP models a user who proceeds
from each document in the SERP to the next with a probability ϕ
that reflects the level of “patience” that they bring to this particular
search context.

Diversification. A range of metrics have been proposed to eval-
uate search result diversification. Many are extended versions of
traditional IR metrics, while others are based on specific meaphors
for diversity. Given a query q and a metric cutoff k , a diversity
metricm measures the extent to which the top retrieved documents
cover the query aspects Aq = a1, ...,am where each aspect aj is
associated with a value pj that represents its importance or popular-
ity. Let rel(di ,a) denote the relevance of the i th-ranked document
to aspect a, and nrel(di−1,a) denote the number of seen documents
relevant to aspect a in ranks 1 through i − 1.

Subtopic Recall srec@k [30] measures the range of query aspects
that have been covered up to depth k , computed as the ratio of
the number of aspects covered to the total number of aspects. The
Intent-Aware (IA) framework [1] provides a method to extend any
information retrieval metric to evaluate a diversified ranking by
using a linear combination of the metric scores of individual rank-
ings, computed by treating each aspect in turn as the only relevant
aspect to the user while assuming the rest are non-relevant:

m-IA@k =
∑
a∈Aq

pa · ma@k (1)

where m can be any metric such as AP, RR or NDCG, and where
ma@k is the calculation of that metric treating a as the only desired
aspect of the set Aq .

Many researchers have extended metrics based on the cascade
model of user behavior [11, 19], which assumes that a probabilistic
user examines documents by reading a ranked results list from the
top, and stopping when they are satisfied (or frustrated with) the
search results. In general, these metrics follow the formula:

m@k =
1
N

k∑
i=1

1
discount(i)


∑
a∈Aq

pa · rel(di ,a) · novelty(d | d1,di−1)

 (2)

where N is a normalization factor to map scores to the range of
[0, 1]; pa is the importance of the query aspect; discount(i) is a
discount factor that emphasizes top ranked documents; rel(di ,a) is
as already defined; and novelty(d | d1,di−1) is the metric’s approach
to measuring novelty. Some metrics model novelty indirectly, by
penalizing documents that are returned for aspects that have been
covered before rank i [7, 8]. Chapelle et al. [6] model novelty by



how unlikely it is that the previous documents have covered the
aspect.

The widely used α -NDCG metric [7] scores documents by how
well they cover the different aspects of queries. In addition, it as-
sumes that the relevance of a document to a query is proportional
to the number of aspects, or nuggets, that it contains. Together with
ideas from NDCG, the quality of the ranking is measured as:

α -NDCG@k =
1

α -DCGIdeal

k∑
i=1

1
log2(i + 1)


∑
a∈Aq

rel(di ,a)(1 − α)nrel(di−1,a)
 (3)

where pa is not modeled; and α ∈ [0, 1] controls the user tolerance
for redundancy. Novelty and Rank Biased Precision (NRBP) [8]
combines ideas from RBP and α -NDCG as follows:

NRBP =
1 − (1 − α)β

|Aq |
·

∞∑
i=1

βi−1
∑
a∈Aq

rel(di ,a)(1 − α)nrel(di−1,a) (4)

where β denotes the patience of the user; α denotes the user’s toler-
ance in regard to redundant content; rel(di ,a) is a binary relevance;
andpa is not modeled. Note that Equation 4 was derived after apply-
ing a collection-independent normalization. There are two ways to
normalize a diversified ranking score [9]: collection-dependent and
collection-independent. Collection-dependent normalization uses
an approximate ideal ranking based on ground truth, and will not
be ideal if some aspects have no relevant documents. Normalized
NRBP (nNRBP) [9] uses collection-dependent normalization. In con-
trast, collection-independent normalization is based on the highest
possible score achievable from a perfect collection [8] and con-
structs a ranking of documents relevant to all aspects. Alongside
ERR, Chapelle et al. [6] propose a diversity-aware metric as follows:

ERR@k =
k∑
i=1

1
i

∑
a∈Aq

pa · pai ·

i−1∏
j=1

(1 − paj ) (5)

where pai is the probability that a document at rank i is relevant to
aspect a, and where pai = (2rel(di ,a) − 1)/2relmax, with relmax being
the maximum relevance grade.

Both NRBP and α -NDCG ignore the graded relevance of doc-
uments with respect to the query aspects, do not model aspect
importance, and do not normalize scores using approximate ideal
rankings. The D#-measure framework introduced by Sakai and Song
[23] combines ideas from intent-aware, subtopic-recall, and the cas-
cade model to address several components: normalization, graded
relevance, aspect importance, discounted gain and coverage of as-
pects. D#-m boosts aspect recall and rewards documents that are
highly relevant to more popular aspects of the query as follows:

D#-m@k = γ · srec@k + (1 − γ ) · D-m@k (6)

where D-m@k is calculated assuming a global gain of relevance [24].
Most of the previous measures have an explicit or implicit as-

sumption that the user gains utility from seeing relevant documents;
Smucker and Clarke [25] explicitly model the amount of time that
users need when viewing document summaries and full documents,
and incorporate this into a metric called Time-Biased Gain.

Recently, the Cube Test (CT) [17] measure has been proposed,
based on a metaphor of filling a cube with “document water”, as
a way of modeling the speed at which the user information need
is met. The gain of each document is judged with consideration of

both the query aspects it addresses, and the extent to which those
aspects have already been addressed by previous documents. In
addition, it assumes a model where the user can stop gaining benefit
from some aspect – when that prism within the cube has become
full. This model is motivated by professional search scenarios such
as patent search, in which a patent officer does not need all relevant
documents to invalidate certain claims in a patent application. The
Cube Test can be represented as follows:

CT(q,D) =
1

Time(D)

|D |∑
i=1

∑
a∈Aq

pa · rel(di ,a) · γ
nrel(di−1,a) · τa , (7)

where D is the set of retrieved documents, rel(di ,a) is normalized
to [0, 1]; and γ is a discounting factor that controls the trade-off
between relevance and novelty. In addition,MH determines the cube
height; τa is an indicator function such that, if

∑i−1
j=1 rel(dj ,a) < MH,

then τa = 1, and τa = 0 otherwise; and Time(D) is the time spent
examining documents in D. The “Average Cube Test” [27] is then
defined as:

ACT(q,Dq ) =
1

|Dq |

|Dq |∑
i=1

CT(q,Di ) , (8)

in which Di is the set of documents in Dq form the first to the i th
inclusive. In the 2015 TREC Dynamic Domain (DD) track [28], MH
was set to 5 and Time is the number of iterations it takes a user to
reach the i th document.

Truncated Rankings. There are many search scenarios in which it
is desirable for the search system to truncate the ranked list of doc-
uments, rather that supplying documents that it has no confidence
in, or that will not be of interest to the presumed user. Examples
of these cases include question answering, and search via mobile
devices. To measure this aspect, Liu et al. [16] propose appending
a nominal terminal document to rankings, to indicate that there are
no more documents to be considered. Liu et al. then extend a range
of previous ad hoc retrieval metrics, defining a gain value for the
terminal document, and then using that in the calculation of the
metric.

3 FRAMEWORK
As an illustrative example, consider the space of all rankings of
at most two documents, including truncated rankings, shown in
Figure 1. We assume that a document is relevant to a single aspect
from query aspects Aq = {a, b}. Each ranking is represented by a
sequence of relevance labels, where: ameans a document is relevant
to aspect a; b indicates a document is relevant to aspect b; x means
a document is not relevant to any aspect; and ∅ indicates an empty
ranking.

Intuitively, there are some rankings that are better – or at least
no worse – than others. For instance, the ranking −→aa is not worse
than the ranking −→a , as the former has more relevant documents.
From an evaluation perspective, we thus expect a sound evaluation
metric to give the first of those two rankings a numerical score that
is not less than the score assigned to the second ranking.

Following this reasoning, we define a set of desirable proper-
ties that metrics for evaluating diversified and truncated rankings
should satisfy.



−→a −→aa
−→
ab −→ax

−→
b

−→
bb

−→
ba

−→
bx

−→x −→xa
−→
xb −→xx

∅

Figure 1: List of all possible diversified rankings of at most length
two, including truncated rankings, with two aspects.

∅

−→a

−→aa
−→
ab −→ax

−→
b

−→
bb

−→
ba

−→
bx

−→x

−→xa
−→
xb −→xx

Y Z : m(S) ≤ m(S ·r )

Figure 2: Tree of relations between rankings induced using the
Relevance Monotonicity property.

3.1 Properties
The properties defined below are not intended to be comprehensive,
but rather informative, and to create a better understanding of the
behavior of metrics in complex search tasks involving diversifica-
tion and truncation.

Relevance Monotonicity. Many pairs of rankings in Figure 1, such
as −→a and −→aa, or

−→
b and

−→
bb, or −→a and

−→
ab, are instantiations of ex-

tending a sequence by adding a relevant document. To describe
the relation between these rankings, we suggest that if a ranking
S is extended by a single relevant document r , then the computed
effectiveness score should not decrease, but might remain the same.
That is, given a metric m, we argue for the requirement

m(S) ≤ m(S ·r ) . (9)

Figure 2 shows the graph of relations between rankings induced
using the Relevance Monotonicity property. Note that this prop-
erty is different from the monotonicity property defined by Moffat
[18]. Moffat’s property focuses on extending a ranking by a docu-
ment whether it is relevant or not, which might be desirable if it
is required to have a lower bound of performance. In our case, we
believe that relevance monotonicity is desirable for all metrics.

It might also be argued that if the user has seen a relevant docu-
ment in S that satisfied their information need, then adding another
relevant document r with content already covered by S should be
actively penalized, in that it somehow detracts from the search
experience. There are two cases where this might occur. The first
is when we add a duplicate of a seen relevant document. In this
case, we note that a second occurrence of any document in a rank-
ing should be regarded as being non-relevant; and in any case, a
duplicate detection process if present would prevent that from hap-
pening. The second case where viewing more relevant documents
might be detrimental is when the environment requires high effort

∅

−→a

−→aa
−→
ab −→ax

−→
b

−→
bb

−→
ba

−→
bx

−→x

−→xa
−→
xb −→xx

Y Z : m(S ·x) ≤ m(S)

Figure 3: Tree of relations between rankings induced using the
Irrelevance Monotonicity property.

from the user. For instance, Ong et al. [20] found that users do not
necessarily click more when more relevant documents are retrieved
in mobile search, an effect possibly caused by the high cost of in-
specting documents on a small screen. Whether that difference in
click rate should be regarded as evidence of dissatisfaction with the
Search Engine Result Page (SERP) presented is a question that is
interesting to consider, but beyond the scope of this current work.

Irrelevance Monotonicity. We further suggest that if a ranking
S is extended by a single non-relevant document x , then the com-
puted effectiveness score should not increase – Figure 3 shows the
Irrelevance Monotonicity property using the illustrative rankings.
That is, given a metricm:

m(S ·x) ≤ m(S) . (10)

We argue for this inequality on the grounds that the reward for
adding a non-relevant document x to S should never be more than
the reward of maintaining the original (even if truncated) ranking S .
This is especially important in scenarios such as question answering,
in which a desirable property is the ability of the search system to
avoid giving a wrong, misleading, or offensive answer [21].

Again, a counter-view might be argued in certain cases – for
example, that seeing one or more non-relevant documents might
help the user to understand what they are actually searching for,
and to help them clarify their intentions as they formulate further
queries in the same search session. In this study, our primary focus
is on a single search interaction, and therefore we assume that
non-relevant documents lead to no gain. Nevertheless, measuring
the system’s ability to learn from user interactions over a sequence
of queries is an interesting property to model in a broader whole-
of-session evaluation context.

Redundancy. Suppose that the search system needs to diversify a
Search Engine Result Page (SERP) to cover two or more distinct as-
pects associated with the query. Now the question becomes whether
providing two (or multiple) documents for the same aspect is better
or worse than providing documents relevant to different aspects of
the query. Factors such as relevance grade and aspect importance
are some of the variables that determine the answer. To contain the
space of possibilities, in the first instance we make the following
assumptions:



∅

−→a
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−→
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−→
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−→x

−→xa
−→
xb −→xx

Y Z : m(S ·p) ≤ m(S ·n)

Figure 4: Tree of relations between rankings induced using the
Redundancy property.

(1) Uniform distribution of aspect probability. All aspects have the
same importance or weight pi = 1/m for a query q withm as-
pects Aq = a1, . . . ,am , that is, there are no preferences among
the aspects.

(2) Binary relevance judgments to aspects. A document is either
relevant to an aspect or not relevant.

(3) Single aspect document relevance. If a document is relevant, it is
relevant to only one aspect.

Under these assumptions, a diversification metric should not favor
a run that adds a document relevant to an already-seen aspect
over a run that adds a relevant document to an unseen, novel
aspect [5]. That is, if p denotes a document relevant to an aspect
already covered by S , and n denotes a document relevant to an
aspect that has no coverage in S , then we suggest that:

m(S ·p) ≤ m(S ·n) (11)

One might argue that, if a metric measures diversity under the three
assumptions mentioned above, then the relationship should be one
of strict inequality. However the relaxed version of this property
is needed to properly handle metrics that have fixed cutoffs. For
example, assuming two aspects a1 and a2, if S = a1·a1·a1 and
subtopic recall to depth three is being measured, then srec@3(S ·a1)
= srec@3 (S ·a2) = 1

2 , and equality is required. Figure 4 shows the
relationships that arise from the Redundancy property.

3.2 Induction
The properties defined above do not cover all possible relations
between rankings. However, as shown in Figure 5, many pairs of
rankings have a relation between them induced using combina-
tion of properties. For instance, the

−→
bx ranking is not better than

the
−→
bb ranking via the Irrelevance Monotonicity and Relevance

Monotonicity properties.

3.3 Case Analysis
Given a set of properties and a set of metrics, there are different
approaches that can be employed to determine whether the metrics
satisfy the properties. One method consists of proving the satisfac-
tion of a certain property mathematically, by examining the metric
formulation and, for example, constructing an inductive proof. A
second option, and the one employed here, is to enumerate all
possible input rankings up to some maximum evaluation depth k ,

∅

−→a

−→aa
−→
ab −→ax

−→
b

−→
bb

−→
ba

−→
bx

−→x

−→xa
−→
xb −→xx

Y Z : m(S) ≤ m(S ·r )
Y Z : m(S ·x) ≤ m(S)
Y Z : m(S ·p) ≤ m(S ·n)

Figure 5: Tree of relations between rankings induced using multi-
ple properties.

and note any exceptions to the properties that arise. This is useful
in that it allows us to quantify the behavior of the metric. It also
provides the cases where the metrics do not satisfy the property;
which might be instrumental in understanding their behavior and
suitability to a given search task.

In this framework, we perform the following three steps:
(1) Generate all possible instances of a truncated and diversified

ranking. This is equivalent to building anm + 1-ary tree, where
m + 1 is the number of relevance choices – either relevant for
one of them different aspects for this query, or completely non-
relevant – of each document that a system can add to the ranking
at a given position of some depth h, the length of the rankings
being generated. A path from the root node to any leaf node
represents a full-length ranking, and a path from the root to an
internal node represents a truncated ranking that should also
be assigned a score by each of the metrics. The total number of
rankings of length h is given by

Total number of cases =
(m + 1)h+1 − 1

m
.

(2) Evaluate all generated rankings using the metrics m(·) being
evaluated, that is, generate metric scores for each of the rankings.

(3) For every metric, use the computed scores and the known tree-
based relationships of the generated runs to determine whether
the metric violates any of the properties proposed by Equa-
tions 9, 10, and 11.

Note that this approach provides certainty of outcome if violations
are detected; and, provided h is moderately large, confidence (but
not certainty) of outcome if no violations are detected.

4 EVALUATION
We now employ this approach to study some of the metrics that
have been used to evaluate search tasks.1 In particular, we consider
the metrics used in the TREC Web and Dynamic Domain tracks,
and use each of them to score all possible rankings of length up to
10, and assuming that two different aspects of relevance occur.

1The code is available at https://github.com/aalbahem/ir-eval-meta-analysis.

https://github.com/aalbahem/ir-eval-meta-analysis


Table 1: Violation summary of properties and metrics when con-
sidering all possible truncated rankings of up to 10 documents, with
✗ and X indicating whether a property is violated or not.

Metric Properties

m(S) ≤ m(S ·r ) m(S ·x) ≤ m(S) m(S ·p) ≤ m(S ·n) Induction

ACT X ✗ X ✗

AP-IA X X ✗ ✗

4.1 Metrics
We use standard evaluation tools to perform the measurements. Ad
hoc retrieval metrics RR, P@5,P@10 NDCG@5, NDCG@10 and AP
were computed using trec_eval.2

Diversification metrics were computed using the official eval-
uation script for the TREC Web Diversity task using ndeval.3 In
particular, we considered Subtopic Recall [30], Intent-Aware Aver-
age Precision (AP-IA) and Precision (P-IA) [1], and several Cascade-
based metrics: diversity-aware Expected Reciprocal Rank (ERR) [6];
α -NDCG [7]; and Novelty and Rank Biased Precision (NRBP) [8].

We also included the metrics used in the TREC Dynamic Do-
main (DD) Track [28].4 TREC DD examines search scenarios that
involve truncated rankings and diversification. The metrics used to
evaluate systems are the Cube Test (CT) [17], Normalized Cube Test
(nCT) [29], and the Average Cube Test (ACT) [28]. In our analysis,
we generated runs according to the TREC DD run format, assum-
ing a single iteration. As these metrics were used in TREC DD to
evaluate the truncation and diversification dimensions of rankings,
we believe they are good candidates for which to instantiate our
framework.

4.2 Results
Table 1 shows the properties identified in our framework, and lists
the metrics that were found to have violated them. ACT violates
the Irrelevance Monotonicity property, and AP-IA violates the Re-
dundancy property. ACT violates almost 99% of the cases, 29,496
violations out of 29,523 cases where Irrelevance Monotonicity is
applicable; whereas AP-IA violates 100% of 2,026 cases in which
Redundancy is applicable. In addition, both metrics violate relation-
ships induced using Induction. None of the other metrics included
in the evaluation violated any of the properties.

4.3 Violation Analysis
To understand the basis of these violations, we examined cases in
detail. In the case of ACT, we found that a violation occurs because
the metric calculates the score of the ranking by first calculating
CT at each position in the ranking, and then averaging these scores.
For instance, assuming a query has two aspects a and b, if S = a·b
and covers the two aspects, then

ACT(S) =
CT(a) + CT(a·b)

2
= 0.0750

and
2https://github.com/usnistgov/trec_eval
3https://github.com/trec-web/trec-web-2014
4https://github.com/trec-dd/trec-dd-jig

ACT(S ·x) =
CT(a) + CT(a·b) + CT(a·b·x)

3
= 0.08330.

That is, the ACT score of S ·x is greater than the ACT score for the
shorter ranking S .

In the Intent-Awaremetrics, the score of a ranking is theweighted
sum of the scores of multiple rankings, considering the facets inde-
pendently [1]. A violation can occur in AP-IA when a ranking con-
tains documents relevant to a single aspect only. For example, given
S = a·x ·x , then S ·p = a·x ·x ·a and S ·n = a·x ·x ·b. Suppose further
that there are five relevant documents for facet a, and five relevant
documents for facet b, and hence R = 10 relevant documents in to-
tal. When these two rankings are scored, we get AP-IA(S ·p) = 0.150,
with the AP score for facet a being computed as (1/10) · (1/1 + 2/4)
and AP for facet b remaining zero; and AP-IA(S ·n) = 0.125, com-
puted as the sum of (1/10) · (1/1) (the AP score for facet a) and
(1/10) · (1/4) (the AP score for facet b). The two separate AP scores
in the second case do not outweigh the single larger one in the first
case, giving rise to the violation.

5 DISCUSSION
These results have two implications. First, with respect to ACT, it
raises a concern about its ability to evaluate the truncation dimen-
sion of a ranking system. However, ACT satisfies our Redundancy
property. With respect to the AP-IA, it confirms what has been re-
ported in previous work [8, 24]: the intent-aware evaluation frame-
work [1] can produce counter-intuitive results when some aspects
are less frequent in the ranking than others.

Therefore, it confirms the concern about their ability to measure
the diversification aspect of rankings.

Metric Behavior in Truncated Rankings. As discussed previously,
many metrics assume that the cutoff k is smaller than the length of
the ranking l . However, the assumption does not hold if truncated
rankings are permitted, that is, when k < l . When faced with a
truncated ranking, the computation associated with each metric
needs to be adapted. We studied the implementations in the vari-
ous metric evaluation scripts to determine how they handle such
situations.

In the case where k is part of the metric calculation (for ex-
ample, P@10 and P-IA@10), trec_eval and ndeval assume the
insertion of non-relevant documents in positions l + 1 to k . In addi-
tion, trec_eval has another implementation of P@k that divides
by l instead of k . Similarly, metrics with an “ideal” normalization
component (α -NDCG as implemented in ndeval and NDCG as im-
plemented in trec_eval) still calculate the score of an ideal ranking
of depth k (rather than to the shallower depth l ) and use it to nor-
malize ranking scores, thereby again interpolating non-relevant
documents to “make up the numbers”.

Evaluation of Single-Aspect Rankings. We also studied rankings
with only a single aspect, a situation for which many of the evalua-
tion metrics fall back to traditional ad hoc retrieval metrics. In this
special case wherem = 1, ACT still does not satisfy the Irrelevance
Monotonicity property of Equation 10. For AP-IA, there is a single
ranking, and it is equivalent to AP. As there are no other aspects,

https://github.com/usnistgov/trec_eval
https://github.com/trec-web/trec-web-2014
https://github.com/trec-dd/trec-dd-jig


the third property is not applicable since there is no notion of an
unseen aspect.

6 CONCLUSIONS AND FUTUREWORK
Evaluation is a cornerstone of information retrieval research, and
a great number of metrics have been proposed to evaluate search
systems. Therefore, it is vital that researchers understand and use
evaluation metrics appropriately. In this work, we proposed a novel
analysis framework that supports the quantification of the extent
to which evaluation metrics satisfy a set of desirable properties.
We instantiated the framework based on three desirable properties
that metrics used to evaluate diversified and truncated rankings
should satisfy: Relevance Monotonicity, Irrelevance Monotonicity and
Redundancy. Using the framework, existing diversification metrics
were analyzed, finding that the Average Cube Test (ACT) might
be unpredictable when evaluating truncated rankings, as is the
case for the TREC DD Track; and that Intent-Aware Average Preci-
sion (AP-IA) provides counter-intuitive results in some situations.
This latter result is in line with previous studies on intent-aware
metrics [9, 24].

In future work, we will investigate extensions and modifications
to the framework, such as relaxing some of the assumptions that
were made when defining the current properties, for example the
requirement that the aspects have equal weights. In addition, we
intend to study further diversification metrics such as the recently-
proposed Rank-Biased Utility (RBU) [5], and those arising from the
D-# evaluation framework [23].
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