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In many search scenarios, such as exploratory, comparative, or survey-oriented search, users interact with
dynamic search systems to satisfy multi-aspect information needs. These systems utilize different dynamic
approaches that exploit various user feedback granularity types. Although studies have provided insights
about the role of many components of these systems, they used black-box and isolated experimental setups.
Therefore, the effects of these components or their interactions are still not well understood. We address this
by following a methodology based on ANalysis Of VAriance (ANOVA). We built a Grid Of Points that consists
of systems based on different ways to instantiate three components: initial rankers, dynamic rerankers, and
user feedback granularity. Using evaluation scores based on the TREC Dynamic Domain collections, we built
several ANOVA models to estimate the effects. We found that: (i) although all components significantly affect
search effectiveness, the initial ranker has the largest effective size; (ii) the effect sizes of these components
vary based on the length of the search session and the used effectiveness metric, and (iii) initial rankers and
dynamic rerankers have more prominent effects than user feedback granularity. To improve effectiveness, we
recommend improving the quality of initial rankers and dynamic rerankers. This does not require eliciting
detailed user feedback, which might be expensive or invasive.
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1 INTRODUCTION
In many search scenarios, users engage with search systems to find and synthesize relevant
information in order to perform certain tasks or acquire knowledge. During these scenarios, users
might issue multiple queries, paginate through search results or annotate documents. To serve users
better, several dynamic search systems that can learn from user feedback and adapt subsequent
results have been developed [17, 35, 43, 48, 78, 87, 88].
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Fig. 1. Different dynamic search systems addressing a multi-aspect information need (“Economic impacts of
COVID-19").

In tackling complex information needs, it might not be enough to focus on finding relevant
documents. For instance, consider a person who wants to know about the economic impacts of
the coronavirus pandemic (COVID-19) that started in 2019. To fully understand and comprehend
the topic, they might need to read about multiple impacts of COVID-19 on the tourism industry,
the health sector, and the art industry. In such scenarios, studies have shown that user satisfaction
with the search systems depends on many search qualities such as retrieving relevant documents
(topical relevance), reducing redundancy (novelty or diversity), and minimizing user effort [33].

Ultimately, to serve users better, search systems should have components that accommodate
the above aspects in the ranking process. To that end, there are many components that could
affect the performance of search systems. One component is user feedback. Ideally, the more we
know about the information needs and the relevance of seen documents in a search session, the
more likely we could serve the users better in consecutive interactions. Consider the examples
of different dynamic search systems that a user might interact with to understand the economic
impacts of COVID-19 (shown in Figure 1). Consider the case that the user indicates to the system
that a document contains key relevant information for a query aspect. Since the user might have
sufficient information to satisfy the aspect with the found key information, the system might focus
on other aspects. However, suppose the user marks documents as relevant or not relevant. In this
case, the system might retrieve similar documents to the inspected documents, which might be
less useful for the user. Many studies have shown the benefits of utilizing relevant passages [10],
highlighted and annotated texts [29, 68]. Other studies showed the benefits of utilizing topically
structured user feedback [43].

Another source of variance in dynamic search is the initial ranker. Consider System I in Figure
1 with the high precision and low subtopic recall in its first response to a user query. Even though
a dynamic algorithm might effectively incorporate user feedback, the ranking might be suboptimal.
The initial ranker will always provide documents related to seen subtopics.

The dynamic approach or algorithm that utilizes user feedback also affects the effectiveness of
an interactive search system. The dynamic approach has been the main focus of various interactive
search systems. Systems have utilized different approaches such as query expansion [40], content
similarity [9], interactive diversification [54] and reinforcement learning [43].
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Although researchers have exploited various granularity types of user feedback using different
dynamic ranking approaches, they mostly carried out a black-box evaluation. In a black-box
evaluation, we attribute the effectiveness attained by systems to the systems themselves without
consideration of the steps or the building blocks that might affect the performance. Ferro and Silvello
[27] succinctly summarized the limitations of this experimental evaluation. First, it obscures the
ability to understand how different components interact with each other and contributed to overall
effectiveness of systems. Second, it assumes search system designers know the best configuration
beforehand, which combination of components is best studied for a given task. Third, it hinders the
possibility of determining which components are more convenient to invest effort and resources
because they or their combinations have the most significant effects on performance.

Recently, a white-box evaluation of a search system’s effectiveness has received attention [25–27].
In this setup, we investigate the effects of the search systems’ internal components on effectiveness.
Ferro and Silvello [26] introduced the component-based analysis to evaluate search systems. The
framework first builds a Grid Of Points (GoP) that consists of all systems of combinations of ways to
instantiate the search system’s components. We then determine each component’s contribution via
a variance analysis of the effectiveness scores– ANalysis Of VAriance (ANOVA). The effectiveness
scores are measured by metrics and treated as the dependent variable. The components are treated
as independent variables.
This research is a first step toward estimating the effects of various factors in dynamic search.

More specifically, we focus on a dynamic search setup that tackles multi-aspect information needs
with explicit user feedback, as instantiated in the TREC Dynamic Domain track [79–81]. This is
motivated by a number of reasons. First, the TREC Dynamic Domain setup caters to satisfying the
overall information needs of users; hence it aligns more with satisfying multi-aspect information
needs than the multi-query session track setup [13], which focuses on satisfying the last query
issued by a user. Second, these test collections include graded relevance judgments, at both the
aspect and passage levels. Therefore, it allows us to investigate the effects of various components
of dynamic search that have typically been studied in isolated setups. Third, the richness of the
resources also helps to avoid issues related to users’ ability to submit and formulate effective queries.
Given this setup, we study three factors: the initial ranker, the dynamic reranker, and user feedback
granularity.

In this work, we aim to investigate following main research question: How do different components
of dynamic search systems affect search performance? We further decompose it into three research
sub-questions:

• RQ 1: What are the effects of the topics and system factors on the performance of dynamic
search?

• RQ 2: What are the effects of the three factors of a dynamic search system (initial ranker,
dynamic reranker, and user feedback granularity)?

• RQ 3: Do the effects of factors differ as we progress in the search session?
The rest of the paper is organized as follows. In Section 2, we review related work. In Section 3,

we describe how we apply the ANOVA-based component analysis [27] to analyze effects of various
factors on the performance of dynamic search. Section 4 describes the setup of our experiments.
We report and discuss the analysis in Section 5. Lastly, Section 6 concludes the work.

2 RELATEDWORK
2.1 Dynamic Search
Dynamic search refers to various interactive search tasks. Indeed, researchers have organized many
tasked to tackle these tasks. The Interactive track [55] evaluates an interactive search setup with
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live users where the focus was using user feedback to improve ad hoc search. The TREC Relevance
Feedback track [11] addresses the lack of advancements of relevance feedback algorithms. This
was attributed to the difficulty of separating the impact of factors such as the initial ranker, the
feedback documents used, and the feedback algorithms themselves [11]. The TREC Session track
[13] facilitates research on multi-query search sessions. A scenario where users issue several queries
to find documents that satisfy their information needs. The systems were evaluated based on their
ability to satisfy the𝑚th query. Therefore, it was not evaluating the overall process. The TREC
Dynamic Domain track [79] was created to foster research in complex search tasks, which are
exploratory and run over multiple rounds of interactions. The final system output is then judged
based on how well the system performed in satisfying the user goal of the multi-aspect information
needs. As this task addresses evaluating the overall system performance of multi-aspect retrieval,
we utilized its resources.

2.2 Retrieval Approaches
Many retrieval approaches have been proposed to tackle multi-aspect information needs in static
and dynamic setups. We briefly describe these approaches.

Search result diversification. Search result diversification is a research area that initially focuses
on tackling ambiguous and underspecified queries [65]. The essence of search result diversification
is how to rank documents to balance novelty and coverage. Novelty means that documents should
contribute new relevant contents (aspects) to what a user might have seen. On the other side,
coverage relates to the depth of covering a specific aspect or interpretation. Diversification methods
can be divided based on their approach to measure the utility of documents with respect to the
aspects (subtopics) of a query into implicit and explicit [65]. Implicit diversification methods utilize
the content of the documents to diversify search results. Carbonell and Goldstein [12] proposed the
seminal Maximum Marginal Relevance (MMR) method that balances the relevance of a document
to a query by its dissimilarity to other documents already selected to present to users. Explicit
diversification methods tackle diversification by directly estimating the relevance of documents to
the aspects of the query. Agrawal et al. [2] proposed a framework that maximizes the probability
of selecting at least one relevant document for each aspect (IA-Select). Santos et al. [64] proposed
a probabilistic framework called xQuAD (eXplicit Query Aspect Diversification) that represents
the multiple aspects of a query as a set of sub-queries. They also proposed methods to generate
the sub-queries and estimate their importance using query reformulations and their statistics
from commercial search engines. Using TREC Web diversification collection [19], they showed
that xQuaAD is superior to MMR [12] and IA-Select [2]. Raman et al. [60, 61] proposed a two-
level algorithm that diversifies search results in a first ranking to allow users find documents
relevant to multiple subtopics. Raman et al. [60] first predicted which multi-query sessions are
about multi-aspects information needs, then developed a two-level ranking to present search results
to users. Recently, Maxwell et al. [50] found searchers are more successful with diversified rankings
at recognizing relevant documents and learning more about the subtopics of the search tasks.
In recent years, different supervised approaches that adapt learning-to-rank and neural ranking
methods to search result diversification have been proposed. These methods extend both implicit
[74–77, 89] and explicit [34, 45, 57] diversification models. Although these approaches outperform
unsupervised search result diversification approaches, they have yet not been tested – to our
knowledge – in dynamic search scenarios. We leave to future work the design of more sophisticated
dynamic search systems that incorporate diversity-aware learning-to-rank and neural ranking
methods [77].
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Interactive diversification. Many systems have used various explicit or implicit diversification
techniques as a principle approach to balance exploitation and exploration in tackling complex
information in an interactive setup. Moraes et al. [54] utilized the xQuAD diversification method
and its recent hierarchical intent variant [31] to diversify search results, which performed better
than other diversification techniques such as topic modeling or 𝑘-means clustering utilized by
Joganah et al. [37]. Similarly, Zhang et al. [84] used the Rocchio algorithm and the subtopic-based
and passage-based feedback to generate multiple queries used by xQuAD. Their results achieve
competitive results to other approaches that utilize deep reinforcement learning algorithms [71, 78].
Using many explicit diversification methods, Moraes [52] experimented with various methods to
model subtopics using subtopic-, passage-based and graded relevance feedback. These methods
were superior to the MMR diversification and relevance model methods.

Query expansion. Much research in interactive search has exploited user interaction to refor-
mulate user queries to better approximate user information needs. Rocchio [62] proposed a query
reformulation method within the vector space model that selects terms based on their weights
after subtracting the weights of terms found in the query and relevant documents by their weights
in non-relevant documents. Lavrenko and Croft [40] proposed the Relevance Model that expands
queries using top weighted terms generated by a language model induced from the (pseudo) relevant
documents. Levine et al. [42] extended the relevance model to incorporate the dynamic changes in
user information needs in multi-query search sessions. Rahimi and Yang [58] explored different
relevance models to expand user queries using fine-grained user feedback.

Similarity distance. This approach treats the search process as finding more similar documents
given the user feedback or moving the document search space away from non-relevant documents.
Bo et al. [9], Jiyun and Yang [36] ranked documents based on their relevance to the user query
and similarity to seen relevant documents. In two-level interactive diversified rankings, Raman
et al. [61] found after building the first level (page) of diversified search results, generating the
second level of ranking based on the cosine similarity to clicked documents in the first page was
competitive to many methods that use a supervised machine learning approach to generate the
second level of rankings.

Reinforcement learning. With the existence of user interaction, many studies have modeled
interactive search as a reinforcement learning problem. That is given a set of actions, the search
system needs to choose an action that maximizes a reward function. The reward function is usually
a metric that we calculate using the implicit or explicit user feedback. Jin et al. [35] instantiated a
multi-page search on a diversification collection that leveraged user feedback in the first page to
develop better rankings in the next pages. Li et al. [43] investigated using a query pool in finding
relevant documents, where they modeled selecting which queries to search with as a multi-armed
bandit problem. Using the number of relevant documents as a reward policy, their approach was
superior to the Rocchio algorithm in various collections. In multi-query search sessions, Luo et al.
[48] modeled the interaction between a search system and a user as a dual-agent game, where
these agents cooperatively aim to maximize their long term rewards. Yang and Yang [78] and
Tang and Yang [71] utilized a contextual bandit algorithm that learns the best action to perform
in interactive search with explicit user feedback. Recently, Zhiwen and Yang [87] proposed to
compress an entire corpus into a global low-dimension deep learning representation, then they
designed a reinforcement agent to utilize rich user relevance feedback from previous iterations to
select documents.
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2.3 Component-based Analysis of Search Systems
Information retrieval systems are inherently complex. Moreover, offline evaluation of information
retrieval systems and the Cranfield paradigm are built on the notion that topic variability plays an
important role in the understanding of system performance [30]. Building a simple ad hoc search
method requires many steps or components. A researcher or practitioner needs to determine the
tokenizer, the stemming algorithm, and the stop-word list. A typical diversification method consists
of two components: an initial ranker that generates an initial ranked list of documents for reranking,
and a diversification algorithm that reranks documents in the initial list [65]. The diversification
algorithm itself might consist of multiple components. For instance, the xQuAD framework consists
of parts such as relevance estimation, sub-query generation, and importance estimation. Many of
the interactive search systems submitted to the TREC Dynamic Domain track consist of multiple
complex components. Moraes et al. [53] classified their components into four types: initial ranker,
dynamic reranker, subtopic modeling, and stopping strategy.
Studies have found that different instantiations of system components lead to different search

effectiveness as it is the case in ad hoc search [27], diversification algorithms [22, 64], and interactive
search [50, 53].
In the following, we describe several research lines that focus on understanding the search

quality of a search system under different instantiations of its building blocks.

Parameter sensitivity. Many search methods we utilize have parameters. The BM25 retrieval
method [69] has the 𝑏 and 𝑘 parameters, whereas a language modeling approach with the Dirichlet
smoothing method has the 𝜇 free parameter. Diversification algorithms, such as xQuAD and MMR,
have a free parameter (𝜆). The parameter balances the contribution of the relevancy and the diversity
of documents in the ranking. A common practice is analyzing the sensitivity of a method to its
free parameters by running different values and evaluating the system’s effectiveness. For instance,
Santos et al. [65] studied the sensitivity of the free parameter 𝜆.

Black-box analysis. The second line of research performs a black-box evaluation to understand
the impacts of various choices in instantiating complex search systems [11, 53, 64]. There are three
analysis types in this approach: component-of-interest, one-component at a time, and Grid of Points.
In these analysis types, we assess the impacts of components by comparing their overall scores on
a particular effectiveness metric. The difference between these types is the detailed exploration of
all combinations of various instantiations of components.

In the component-of-interest analysis, researchers investigate two or more system components
while holding all other components fixed. For instance, Dang and Croft [22] proposed term-level
diversification that uses terms instead of queries as explicit representations of the aspects of
information needs, then studied how the term-level representation performs with two different
diversification algorithms: xQuAD [64] and PM-2 [21].

In the one-component at a time analysis, researchers iteratively pick a component to study, while
keeping other components fixed with particular instantiations. In analyzing the parts of xQuAD,
Santos et al. [64] studied each of them one at a time. They then summarized the impacts of these
components on the overall search system performance. Moraes et al. [53] followed this approach
in understanding the impacts of interactive search components in specialized domains.
Another setup is the Grid of Points (GoP) black-box comparison. Here the researchers will

evaluate all possible combinations of the various instantiations of the search system components
[49].
Ferro and Silvello [27] identified few limitations of a black-box evaluation approach. First, the

evaluation does not show howmuch variance of the system’s effectiveness is attributed to particular
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components or their interactions. Therefore, researchers can not tell which component to focus
on or study. Second, the approach does not consider the effect of the topic on the analysis, which
significantly affects system variance [27]. In addition to these limitations, with many components
and different instantiations, presenting or interpreting the GoP setup results might be difficult.

Factorial design analysis (White-box evaluation). Ferro and Silvello [26] proposed to perform a
crossed factorial design-based analysis. The basic idea is that we treat each component as a factor
or independent variable that affects the system’s effectiveness (the dependent variable). For each
factor (component), there are different levels (instantiations of the component). A factorial design
is then set up by evaluating each topic under all systems built by utilizing various combinations
of the components. We then perform an ANalysis Of VAriance (ANOVA) to understand the effects
of these components. Back in 1999, Banks et al. used ANOVA– in addition to other strategies – to
analyze ad-hoc retrieval systems in TREC-3 [8]. They found that there is a strong interaction effect
between system and topic factors in terms of average precision. Recent studies have followed this
methodology to estimate the effects of different factors in the performance of different information
retrieval systems. Voorhees et al. used sharding of a test collection to replicate system comparisons,
and applied a version of ANOVA based on bootstrapping to analyze system-topic interactions to
increase the sensitivity of the evaluation of system effectiveness [72]. Ferro and Sanderson [25]
proposed several ANOVA models that also incorporate the effects of sharding document collections
to study ad hoc search performance. A recent reproducibility study by Faggioli and Ferro [23]
found that more traditional ANOVA approaches such as the ones proposed by Ferro and Sanderson
[25] are generally more stable with respect to random shards, and less computationally expensive,
while bootstrap ANOVA [72] has more sensitivity in terms of identifying statistically significant
differences among systems. Zampieri et al. [82] used the ANOVA framework to estimate the effects
of various factors such as the topics and the system components in topic difficulty. Roitero et al.
[63] used ANOVA to model the effects of user attributes such as user age, profile age, and gender in
user interactions in music recommendation.

2.4 Analysis of Dynamic Search Components
A few attempts have sought to understand the impacts of components of dynamic search systems
on effectiveness. The TREC Relevance Feedback aimed to uncover the effects of the initial retrieval,
the number of relevant documents, and the relevant documents’ quality. Brondwine et al. [10]
studied the impacts of exploiting unit granularity of user feedback to expand user queries. Li
et al. [43] investigated exploring the topical granularity within the relevance feedback and multi-
armed bandits algorithms. Thought it showed that using bandit algorithms is better than the
Rocchio relevance feedback algorithm, it used a fixed baseline method and assumed the overall
performance was indivisible. Moraes et al. [53] classified systems submitted to the Dynamic Domain
track into four main components: an initial ranker, a dynamic reranker, a subtopic modeler, and a
stopping strategy. The authors then performed a one-component-at-time analysis. The analysis
has shown that the initial ranker, dynamic ranker, and subtopics modeler components will impact
performance. However, the study focused mainly on diversification algorithms and fine-grained
relevance feedback. It also does not informs us how much variance in performance was due to these
components or their interactions. The evaluation also was carried out using the Average Cube Test
ACT metric [79], which prior research have found it might produce counter-intuitive results [5]
and inferior in its ability to measure topical relevance, diversity, and user effort [4]. Nevertheless,
we incorporated Moraes et al. [53]’s taxonomy in the identification of the factors to investigate.
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2.5 Additivity of Search Effectiveness
The work in this paper is complementary to the work of search performance additivity. Armstrong
et al. [7] first introduced the concept of performance additivity and the problem of comparing
against weak baselines. Although performance additivity in a dynamic search system is not our
focus, it sheds light on the importance of component-based analysis in evaluating complex search
systems. In many search tasks, such as learning to rank, search result diversification, and interactive
search, we utilize initial rankers to generate a candidate lists of documents for reranking. In search
result diversification, Akcay et al. [3] and Kharazmi et al. [39] found that diversification algorithms
tend to improve the performance of weak baseline methods, which are usually their initial rankers.
It showed that the choice of the initial ranker contributed to the performance of the sophisticated
search system and shed light on the importance of understanding the contribution of the system
components to performance. In dynamic search, Carterette et al. [13] investigated the possibility of
dynamic search methods to improve under certain conditions that represent different details of
user signals in the multi-query search sessions. Nevertheless, the evaluation setup was a black box
or additivity oriented evaluation. As a result, it did not facilitate knowing whether performance
differences were due to topics or the components utilized such as the user behavior signal conditions,
the dynamic approach, and the initial ranker.

3 METHODOLOGY
In this work, we aim to estimate the effects of dynamic search components that have shown
to impact on search effectiveness. In order to achieve that, we follow Ferro and Silvello [27]’s
Generalized Linear Mixed Model (GLMM), in which ANalysis Of VAriance (ANOVA) is a special
case where factors are categorical values. This model aims to explain the variance of data (an
evaluation metric representing the dependent variable) in terms of controlled variables (factors we
are interested in studying).
Ferro and Silvello [27]’s framework followed the Cranfield paradigm, based on experimental

collections consists of a set of documents (corpus), topics, and relevance judgments. In this frame-
work, we perform four main steps: identify factors, create Grid of Point (GoP) systems, evaluate
effectiveness of the GoP systems, construct and estimates ANOVA models. In the following we
describe our approach to perform these steps.

3.1 System Components
3.1.1 Initial rankers. Several studies utilize a retrieval method such as BM25 to present the first batch
of results to users or generate an initial ranked list for secondary rankers such as a diversification
algorithm. Several studies have found that the choice of the initial ranker has effects in search
effectiveness. One of the TREC Relevance Feedback track’s main findings is that the number
of relevant documents in the initial retrieval before applying relevance feedback impacts on
performance [11]. In multi-query search sessions, utilizing a different initial ranker method impacts
on user behavior [50]. In search result diversification, the choice of the initial ranker significantly
determines whether a search result diversification method is effective or not [3, 39]. Moraes et al.
[53] found that the quality of the initial ranker in terms of precision and recall correlates with search
effectiveness. As a result, we use the initial ranker as one of the main components to investigate.
To generate the initial ranked list of documents for reranking, we experiment with several

well-known and widely used retrieval methods from ad hoc search such as the Vector Space Model
(TFIDF), Language Modeling (LM) [56] with Dirichlet smoothing, Divergence From Randomness
(DFR) [6], BM25 [69] and Pseudo Relevance Feedback [40] (PRF). The first four methods are bag-of-
words standard retrieval methods. They also are widely used methods in academia and industry.
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Fig. 2. User relevance feedback granularity dimensions.

We used the implementation and default parameter values found in the Lucene1 retrieval toolkit.
We experiment with PRF due to its strong performance in ad hoc search. In this method, we first
retrieve the top 10 documents using LM; we then apply RM3 [40] to expand the initial user query
and generate a new ranked list of documents. In all methods, we retrieve the top 1000 ranked
documents and used them as the initial ranked list of documents.

Dynamic reranker (DR). In Section 2, we discussed many approaches to utilize user feedback such
as: query expansion [40, 58, 62], finding similar documents (similarity distance) [9, 36, 41], search
result diversification [53, 54, 84], and reinforcement learning [43, 48, 71, 78]. In this work, we focus
on three approaches: query expansion, finding similar documents, and interactive diversification.
We leave reinforcement learning and other supervised learning approaches such as neural ranking
models [20, 44, 51], and diversity-aware learning-to-rank methods [77] for future work.

User feedback granularity (UFG). Generally, a user might provide feedback with more granularity
in three main dimensions: topical level granularity, unit granularity, and relevance scale granularity
(shown in Figure 2), where:

• Unit granularity: The detailed level of content that users rate. At the document level, users
rate the overall relevance of a document. At the passage level, users rate the relevance of
passages or text chunks from documents.

• Topic level granularity: The detailed level of the information needs to which the feedback is
given. In topic-level feedback, users rate the relevance of information units to the overall topic
of the information needs. In aspect-level feedback, users rate the relevance of information
units concerning the aspects or the subtopics of the information needs.

• Relevance scale granularity: The relevance grades scale assigned to the information units. In
a binary scale, users either judge units as relevant or not. In a graded scale, users assign a
relevance grade to the information units such as key information, relevant, partially relevant,
or not relevant.2

Given the dimensions, we have eight granularity conditions of user feedback as follows:
1https://lucene.apache.org/core/8_0_0/
2In extreme cases, users might provide information in 100 level or as probabilities. However, such approaches are less
common within the research community.
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• TDB: Topic-Document based-Binary relevance feedback.
• TDG: Topic-Document based-Graded relevance feedback.
• TPB: Topic-Passage based-Binary relevance feedback.
• TPG: Topic-Passage based-Graded relevance feedback.
• ADB: Aspect-Document based-Binary relevance feedback.
• ADG: Aspect-Document based-Graded relevance feedback.
• APB: Aspect-Passage based-Binary relevance feedback.
• APG: Aspect-Passage based-Graded relevance feedback.

In Section 3.2, we describe how we adapt existing dynamic rerankers to work under the above
granularity conditions.

3.2 Grid of Points
Once we have identified the factors we are interested in studying, the second step is building a Grid
of Point (GoP) systems that enable the cross-factorial design analysis. In this work, we create a GoP
on the experimental collections by extending commonly used dynamic approaches that leverage
explicit user feedback with different conditions of user feedback granularity.
The Grid of Points consists of different instantiations of three components: the initial ranker,

the dynamic reranker, and the user feedback granularity condition. In the previous section, we
identified five initial rankers, three dynamic rerankers, and eight different conditions of user
feedback granularity. The task of the initial ranker is to retrieve a ranked list of documents for
reranking. The dynamic reranker then utilizes the user feedback according to the user feedback
condition we are experimenting with. The dynamic reranker then gives the next batch of documents
to the simulator, a program that reads from relevance judgments. The feedback is then fed back to
the dynamic reranker to rerank the remaining un-presented documents from the initial ranked
list and present the next batch of documents. Each interaction of presenting a batch of documents
to the simulated user is then counted as an iteration. We run this process for ten iterations. We
now describe the dynamic rerankers and how we modified them to utilize various user feedback
granularity conditions.

3.2.1 Query expansion. As discussed in Section 2, many dynamic search methods used query
reformulation or expansion. As a result, our first dynamic reranker is the Relevance Model (RM)
[40], a widely utilized and actively researched query expansion method.

This model aims to rank documents using terms that are representatives of information needs. It
assumes that given a query 𝑞, there is a relevance language model RM that generates the terms in 𝑞
and documents relevant to𝑞. Given this model, we then rerank documents based on their similarities
to the relevance model, which can be given using Kullback-Leibler divergence as follows:

KL(RM| |𝑑) =
∑
𝑤

𝑃 (𝑤 |RM) log
𝑃 (𝑤 |RM)
𝑃 (𝑤 |𝑑) . (1)

Initially, with no retrieval being performed, 𝑝 (𝑤 |RM) is approximated using a maximum likelihood
estimation model induced from the query 𝑞:

𝑃 (𝑤 |RM) ≈ 𝑃 (𝑤 |𝑞) = 𝑡 𝑓 (𝑤,𝑞)
|𝑞 | , (2)

where 𝑡 𝑓 (𝑤,𝑞) is the frequency of the term𝑤 in the query. In a blind pseudo relevance feedback,
we approximate 𝑃 (𝑤 |RM) by the linear mixture models of the top 𝑘 documents (𝐷𝑞,𝑘 ) from the
initial ranked list of documents 𝐷𝑞 in what is known as the RM1 model shown in the following
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equation:

𝑃 (𝑤 |RM1) =
∑

𝑑∈𝐷𝑞,𝑘

𝑃 (𝑑 |𝑞)
Z 𝑃 (𝑤 |𝑑), (3)

where Z is a normalizing factor, 𝑃 (𝑤 |𝑑) is estimated using a unigram language model. It is a
standard practice also to use only the top-weighted terms according to RM1 and normalize the
model. In our implementation, we use the top 10 terms. Finally, RM1 is then interpolated with the
original query to prevent query drift producing what is known as the RM3 model (Equation 4).

𝑃 (𝑤 |RM3) = 𝜆 𝑃 (𝑤 |𝑞) + (1 − 𝜆) 𝑃 (𝑤 |RM1). (4)

In this work, we set the parameter 𝜆 to 0.5, the default value in the Anserini implementation.3
Generally, we expand the initial query using Equation 4. However, we might model RM1 differently
based on the granularity condition of the user feedback. We describe these models below.

Modeling graded relevance. Although Lavrenko and Croft [40] originally proposed the relevance
model to work with pseudo relevance feedback, researchers use this method to expand queries
from relevant documents 𝐷𝐹 ⊆ 𝐷𝑞 that users rate as relevant. In particular, the standard practice is
to estimate 𝑃 (𝑑 |𝑞) using the standard document model with Dirichlet smoothing (𝑃𝑑𝑖𝑟 (𝑑 |𝑞)) [83].
When users give binary-scale relevance feedback, 𝑃𝑑𝑖𝑟 (𝑑 |𝑞) allows us to approximate the relevance
of documents to the query. With graded relevance feedback, the relevance grades or ratings of
documents 𝑔(𝑞, 𝑑) have been used to model 𝑃 (𝑑 |𝑞) [58, 86]. In this research, we also use relevance
grades and induce a Graded Relevance Model (GRM1) as follows:

𝑃 (𝑤 |GRM1) =
∑
𝑑∈𝐷𝐹

G(𝑔(𝑞, 𝑑))
Z 𝑃 (𝑤 |𝑑), (5)

where G is a function that estimates the probability of document 𝑑 being relevant to the query
𝑞.4 In particular, we use a function that assigns higher probabilities to the documents with larger
relevance grades. As a result, we use the probabilistic estimation provided in many evaluation
metrics, such as the Expected Reciprocal Rank metric [15] as follows:

G(𝑔(𝑞, 𝑑)) = 2𝑔 (𝑞,𝑑) − 1
2𝑔𝑚𝑎𝑥

, (6)

where 𝑔(𝑞, 𝑑) is relevance grade assigned to document 𝑑 and 𝑔𝑚𝑎𝑥 is the maximum grade that
could be assigned in the relevance judgments.

Modeling aspects. Several researchers have shown the benefits of selecting terms using multiple
relevance models estimated from different sets of documents such as different clusters of relevant
documents [66], multiple subsets of documents [59] or sets retrieved based on query variations [46].
Similarly, when expanding user queries using subtopic or aspect level user feedback, we are using
multiple sets of documents that the user has explicitly structured based on the aspects of the query.
Recently, Lu et al. [46] compared different methods to rank documents using multiple relevance
models. The study found that selecting terms based on their average 𝑃 (𝑤 |∗) from different models
performed better than many methods such as the sum or the geometric mean of 𝑃 (𝑤 |∗). As a result,
we use this method to expand the query as follows:

𝑃 (𝑤 |AriRM) ≈ 1
|A𝑖 |

∑
𝑎∈A𝑖

𝑃 (𝑤 |RM𝐷𝑎 ), (7)

3https://github.com/castorini/anserini/releases/tag/anserini-0.6.0
4With binary relevance scale, G(𝑔 (𝑞,𝑑)) will assign the same probability to all documents as the documents have a
relevance grade of 1, hence 𝑃𝑑𝑖𝑟 (𝑑 |𝑞) facilitates differentiating which of these documents are more relevant to the query.
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Table 1. Relevance model estimation under different granularity conditions of user feedback.

Condition 𝑃 (𝑤 |RM) 𝑃 (𝑑 |𝑞)
TDB 𝑃 (𝑤 |RM1) 𝑃𝑑𝑖𝑟 (𝑑 |𝑞)
TDG 𝑃 (𝑤 |GRM1) G(𝑔(𝑞, 𝑑))
TPB 𝑃 (𝑤 |RM1) 𝑃𝑑𝑖𝑟 (concat(𝑑𝑝𝑠𝑔) |𝑞)
TPG 𝑃 (𝑤 |RM1) G(avg(𝑔,𝑑𝑝𝑠𝑔))
ADB 𝑃 (𝑤 |AriRM) 𝑃𝑑𝑖𝑟 (𝑑 |𝑞)
ADG 𝑃 (𝑤 |AriRM) G(𝑔(𝑎, 𝑑))
APB 𝑃 (𝑤 |AriRM) 𝑃𝑑𝑖𝑟 (concat(𝑑𝑝𝑠𝑔) |𝑞)
APG 𝑃 (𝑤 |AriRM) G(avg(𝑔,𝑑𝑝𝑠𝑔))

where A𝑖 is the set of aspects that have relevant documents up to iteration 𝑖 and RM𝐷𝑎 is the
relevance model induced from seen relevant documents to aspect 𝑎 (𝐷𝑎). Note that we induce
the model using GRM1 (Equation 5) or RM1 (Equation 3) based on the relevance scale granularity
condition of the user feedback.

Modeling passages. In utilizing texts of passages from documents, studies have followed two
approaches. In the first approach, we concatenate texts of relevant passages to represent a relevant
document [10, 29], we then induce a relevance model from this new text representation. The second
approach estimates the language model directly from the passages treating them as individual
documents themselves [28, 58]. The first approach implicitly assumes binary relevance judgments.
That is as all passages are equally relevant to the information needs, thus it is not an issue if
we concatenate them. The second approach suffers from the fact the documents might be very
short to model the importance of terms. It also suffers from the term mismatch problem. Based
on initial experiments, we found that many passages might not contain the query terms as they
might focus on certain subtopics of information needs. As a result, we follow the first approach as
it allows better estimation of document relevance to a query and avoids the mismatch problem.
When users provide passage-based feedback with graded relevance, we aggregate the relevance
grades of passages to estimate the document relevance grade. In particular, we use the arithmetic
mean, which Wu et al. [73] have shown to have a high correlation with document-level relevance
grades.
To summarize, we expand the original query using the ten words that have the highest proba-

bilities 𝑃 (𝑤 |RM) induced from the relevance model (RM). Each relevance model also depends on
how we estimate 𝑃 (𝑑 |𝑞). Table 1 shows the various models to estimate 𝑃 (𝑤 |RM) under different
granularity conditions, where concat(𝑑𝑝𝑠𝑔) is the concatenation of all relevant passages (𝑑𝑝𝑠𝑔) found
in the relevant document 𝑑 and avg(𝑔,𝑑𝑝𝑠𝑔) is the arithmetic mean of relevance grades of the
relevant passages.

3.2.2 Similarity Distance. Another traditionally used method in utilizing user feedback is the
content similarity calculation. The basic idea is to rank documents based on their relevance to the
user query and content similarity to presented or seen relevant documents as shown in Equation 8
[9, 36].

score(𝑑, 𝑞) = 𝜆 rel(𝑞, 𝑑) + (1 − 𝜆) SimDist(𝑑, 𝐷𝐹 ). (8)

In the following, we introduce different methods to calculate SimDist(𝑑, 𝐷𝐹 ) under different user
feedback granularity conditions. In introducing these methods, we aim to align them with the
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Table 2. Similarity distance calculation under different granularity conditions of user feedback.

Condition SimDist(𝑑, 𝐷𝐹 ) 𝑤𝑑,𝑑′ 𝑑 ′

TDB argmax𝑑′∈𝐷𝐹
𝑤𝑑,𝑑′ Cosine(𝑑,𝑑 ′) 1 𝑑 ′

TDG argmax𝑑′∈𝐷𝐹
𝑤𝑑,𝑑′ Cosine(𝑑,𝑑 ′) G(𝑔(𝑞, 𝑑 ′

𝑝𝑠𝑔)) 𝑑 ′

TPB argmax𝑑′∈𝐷𝐹
𝑤𝑑,𝑑′ Cosine(𝑑,𝑑 ′) 1 concat(𝑑 ′

𝑝𝑠𝑔)
TPG argmax𝑑′∈𝐷𝐹

𝑤𝑑,𝑑′ Cosine(𝑑,𝑑 ′) G(avg(𝑔,𝑑 ′
𝑝𝑠𝑔)) concat(𝑑 ′

𝑝𝑠𝑔)
ADB

∑
𝑎∈A𝑖

argmax𝑑′∈𝐷𝑎
𝑤𝑑,𝑑′ Cosine(𝑑,𝑑 ′) 1 𝑑 ′

ADG
∑

𝑎∈A𝑖
argmax𝑑′∈𝐷𝑎

𝑤𝑑,𝑑′ Cosine(𝑑,𝑑 ′) G(𝑔(𝑎, 𝑑 ′)) 𝑑 ′

APB
∑

𝑎∈A𝑖
argmax𝑑′∈𝐷𝑎

𝑤𝑑,𝑑′ Cosine(𝑑,𝑑 ′) 1 concat(𝑑 ′
𝑝𝑠𝑔)

APG
∑

𝑎∈A𝑖
argmax𝑑′∈𝐷𝑎

𝑤𝑑,𝑑′ Cosine(𝑑,𝑑 ′) G(avg(𝑔,𝑑 ′
𝑝𝑠𝑔)) concat(𝑑 ′

𝑝𝑠𝑔)

motivation of the approach, which is finding more relevant documents. Here the main focus is not
to model novelty or to reduce redundancy.

Basic model. With binary, document-level and topic-level feedback, we calculate the similarity as
follows:

SimDist(𝑑, 𝐷𝐹 ) = argmax
𝑑′∈𝐷𝐹

Cosine(𝑑,𝑑 ′). (9)

where Cosine(𝑑,𝑑 ′) is calculated using the traditional TFIDF term weighting scheme.

Modeling graded relevance. Ideally, we want to rank a document that is similar to a highly relevant
document higher than a document similar to a partially relevant document. To this end, if we have
graded feedback, then we weight the similarity scores of an unseen document to various relevant
documents as follows:

SimDist(𝑑, 𝐷𝐹 ) = argmax
𝑑′∈𝐷𝐹

G(𝑔(𝑞, 𝑑 ′)) × Cosine(𝑑,𝑑 ′), (10)

where G(𝑔(𝑞, 𝑑 ′)) is calculated using Equation 6. Note this is a general form of the basic model
with binary-scale feedback of Equation 9 where the similarity scores to relevant documents have
equal weights.

Modeling aspects. If users provide aspect-based feedback, then we would like to rank documents
that are similar to relevant documents covering many aspects higher than documents similar to
documents covering a single aspect. In addition, as Equation 10 is general form for the basic model,
we then can extend it further to support aspect-based similarity distance calculation as follows:

SimDist(𝑑, 𝐷𝐹 ) =
∑
𝑎∈A𝑖

SimDist(𝑑, 𝐷𝑎) (11)

Modeling passages. If users provide passage-based feedback, then passage texts allow us to make
better similarity calculation as it helps to remove noise and non-relevant content from relevant
documents. As a result, we concatenate all passages texts into one unit that represents the relevant
document, and aggregate relevance grades of passages using the arithmetic mean.

To summarize, in the similarity distance reranking approach, we rerank documents using Equa-
tion 8, but the calculation of SimDist(𝑑, 𝐷𝐹 ) depends on the user feedback granularity condition.
Table 2 lists the different conditions and how we calculate similarity.

ACM Transactions on Information Systems, Vol. 1, No. 1, Article 1. Publication date: January 2021.



1:14 Ameer Albahem, Damiano Spina, Falk Scholer, and Lawrence Cavedon

3.2.3 Interactive search result diversification. A conventional method to manage exploration and
exploitation of various aspects of an information need is search result diversification. There are two
main approaches to tackle diversification: implicit and explicit. When users provide feedback at the
aspect or subtopic level, then explicit diversification be a natural extension to utilize aspect-based
feedback to cover multiple aspects of the information needs. As a result, we utilize the eXplicit
Query Aspect Diversification xQuAD. The framework is a widely used and effective search result
diversification method. This framework was the basis for many interactive diversification methods
that exhibit competitive or superior performance to other dynamic approaches in many studies
[52, 54, 84]. The framework also allows us to utilize graded relevance to model the coverage and
novelty of documents. Following Moraes et al. [53, 54] interactive xQuAD implementation, at each
iteration 𝑖 , xQuAD greedily selects the document 𝑑 that has the maximum gain in terms of the
relevance to the user query and the diversity score for the different query aspects:

xQuAD(𝑞, 𝑑,A𝑖 ,D) = 1 − 𝜆 rel(𝑞, 𝑑) + 𝜆 div(𝑞, 𝑑,A𝑖 ,D), (12)
whereA𝑖 is the set of the query aspects that have relevant documents in the user feedback, rel(𝑞, 𝑑)
denotes the normalized score of the initial ranker component, D is the set of documents that have
been presented, or selected to present to the user , and div(𝑞, 𝑑,A𝑖 ,D) is as follows:

div(𝑞, 𝑑,A𝑖 ,D) =
∑
𝑎∈A𝑖

𝑃 (𝑎 |𝑞) 𝑃 (𝑑 |𝑞, 𝑎)
∏
𝑑 𝑗 ∈D

(1 − 𝑃 (𝑑 𝑗 |𝑞, 𝑎), (13)

where 𝑃 (𝑎 |𝑞) is uniform for all aspects, hence we assume the importance of aspects remains the
same in a given session. 𝑃 (𝑑 |𝑞, 𝑎) denotes the extent to which the document is relevant to the
aspect of the query. The product

∏
𝑑 𝑗 ∈D (1 − 𝑃 (𝑑 𝑗 |𝑞, 𝑎) models the novelty of the document 𝑑 to

the aspect 𝑎 given documents (D). In each iteration 𝑖 , the diversity score might change based on
the accumulated user feedback. We estimate 𝑃 (𝑑 |𝑞, 𝑎) differently based on whether the document
has received feedback or not as follows.

𝑃 (𝑑 |𝑞, 𝑎) =
{
G(𝑔(𝑎, 𝑑)) 𝑖 𝑓 𝑑 ∈ 𝐷𝐹

𝑃 (𝑑 |𝑎) 𝑖 𝑓 𝑑 ∉ 𝐷𝐹

(14)

The estimation 𝑃 (𝑑 |𝑎) also varies based on the feedback unit granularity.When a user rates passages,
then we follow the approach of Moraes et al. [53, 54] that estimates 𝑃 (𝑑 |𝑎) using passages relevant
to the aspect, 𝑎𝑝𝑠𝑔, as follows:

𝑃 (𝑑 |𝑎) = argmax
𝑝∈𝑎𝑝𝑠𝑔

𝑃 (𝑑 |𝑝) (15)

when feedback is provided at the document level, then we concatenate all relevant documents to
build a single large document 𝑎𝑙𝑑 and estimate 𝑃 (𝑑 |𝑞, 𝑎) as follows:

𝑃 (𝑑 |𝑞, 𝑎) = 𝑃 (𝑑 |𝑎𝑙𝑑 ) (16)
Table 3 lists the different ways to calculate 𝑃 (𝑑 |𝑞, 𝑎) when we have aspect-based feedback. In
the case where feedback is provided at the topic level, then we do not perform the search using
interactive xQuAD. As a result, our design is not fully balanced.
In this work, for interactive diversification, we utilized methods that directly estimate the

relevance of documents to aspects of information needs, and their novelty using user feedback.
Another approach to utilize user feedback in xQuAD is followed by Zhang et al. [84]. The essence
of their approach is to use the fine-grained user feedback to generate a sub-query for each aspect,
then plug these queries into xQuAD. However, as our focus is to utilize the approaches that follow
different paradigms in ranking documents, we think using relevance feedback to generate the
sub-queries being used by xQuAD might introduce a confounding variable in our analysis. The
method will be a hybrid between the relevance feedback algorithm and xQuAD.
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Table 3. The calculation of xQuAD under different granularity conditions of user relevance feedback.

Condition 𝑃 (𝑑 |𝑞, 𝑎), 𝑑 ∈ 𝐷𝐹 𝑃 (𝑑 |𝑞, 𝑎), 𝑑 ∉ 𝐷𝐹

ADB 𝑃 (𝑑 |𝑎𝑙𝑑 ) 𝑃 (𝑑 |𝑎𝑙𝑑 )
ADG G(𝑔(𝑎, 𝑑)) 𝑃 (𝑑 |𝑎𝑙𝑑 )
APB argmax𝑝∈𝑑𝑝𝑠𝑔 𝑃 (𝑑 |𝑝) argmax𝑝∈𝑎𝑝𝑠𝑔 𝑃 (𝑑 |𝑝)
APG argmax𝑝∈𝑎𝑝𝑠𝑔 G(𝑔(𝑎, 𝑝)) argmax𝑝∈𝑎𝑝𝑠𝑔 𝑃 (𝑑 |𝑝)

3.3 Evaluation Metrics
To measure the effects of the different factors, we measure the various systems in the Grid of Points
systems using various metrics.
Across the years, researchers have proposed metrics that measure some or all of the search

qualities the affect user satisfaction in dynamic search. In search result diversification [65], metrics
such as subtopic recall st-rec, and 𝛼-nDCG [18] have been used to evaluate the ability of systems to
retrieve relevant documents that satisfy diverse query aspects. Sloan and Wang [67] used these
metrics to evaluate multi-page search systems. The session Discounted Cumulative Gain (sDCG)
[38], that models graded relevance, and user effort is used to evaluate dynamic search methods
in multi-query search sessions. Recently, the TREC Dynamic Domain (DD) track [79] adopted
the Cube Test (CT) [47], and the Average Cube Test (ACT) [79] metrics, which model relevance,
diversity, and effort, to evaluate dynamic search systems tackling multi-aspect information needs.
Recently, Albahem et al. [4] evaluated extensively the suitability of many of these metrics to

evaluate multi-aspect dynamic search and suggested evaluating dynamic search methods with the
normalized Cube Test (nCT) and the 𝛼-nDCG complex metrics that measure the overall performance
of dynamic search. We also use precision (prec) and subtopic recall (st-rec) to represent simple
metrics that assess individual search qualities such as topical relevance and diversity.

3.4 ANOVA Design
This paper uses an ANOVA framework to estimate the effects of various components of a dynamic
search system. Before introducing the various models to estimate these effects, we describe below
the overall ANOVA design that we followed in all of the models (described in Section 5).

ANOVA aims to explain the data (dependent variable) in terms of the experimental conditions
(the model) and an error component (Equation 17) [25]:

𝐷𝑎𝑡𝑎 = 𝑀𝑜𝑑𝑒𝑙 + 𝐸𝑟𝑟𝑜𝑟 . (17)

In designing the "Model" component of the equation, we follow a factorial design. In particular, we
use a repeated measures design where each topic’s performance (the subject) is evaluated under
each system.
Generally, ANOVA makes some assumptions, whose fulfillment increases the confidence of its

results:
• Normal population distribution: The dependent variable measurements (evaluation metric
scores) for each factor level (component instantiations) are normally distributed.

• Equal variance (homogeneity of variance): the variance of each factor level is (near) equal.
• The dependent variable is an unbounded continuous variable measurement on an interval
scale.

• The independence of the cases. That is, the choices of the factor levels are independent of
each other.
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Generally, evaluation metrics in information retrieval violate the first two assumptions. We also
observed similar trends for the metrics we are using in this study. Nevertheless, several researchers
have found that ANOVA analysis is robust to these violations. A general observation by Ito [32] is
that the F-test is not sensitive to violations of normality. In information retrieval, several researchers
have found the ANOVA framework to be robust to these violations as well [14, 70]. Nevertheless,
we applied 𝑠𝑞𝑟𝑡 transformation to address the normality violation and utilized MacKinnon and
White’s (1985) heteroskedasticity robust standard errors.

The metrics used in this paper also violate the third assumption. To address this, we applied the
recently proposed transformation of Ferrante et al. [24] that uses the ranking of systems according
to the evaluation metric to overcome this violation.

Finally, with respect to the independence of cases, we use a repeated measures study by design.
Thus this assumption is not satisfied. Nevertheless, our components and topics are not dependent
on each other. Our analysis uses thousands of observations obtained from evaluating tens of topics
in more than 100 search systems; thus, we expect the impact of this violation to be limited.

4 EXPERIMENTAL SETUP
In the previous sections, we discussed the system components and how we built the Grid of Point
systems. In this section, we describe the evaluation setup within the ANOVA-based performance
analysis. We describe the evaluation collections, prepossessing steps, and evaluation metrics used.

Test collections. To perform analysis with granularity conditions, we need a collection that
facilitates simulation of various granularity conditions of user feedback. To that end, we utilize
the TREC Dynamic Domain (DD) collections from TREC DD 2016 [80] and TREC DD 2017 [81].
There are two domains in TREC DD 2016: Ebola, and Polar, with 26 and 27 queries for each domain
respectively. The Ebola dataset mainly focuses on web pages from news, government, and not-profit
organization sites discussing the Ebola epidemic outbreak in Africa. The queries are also related to
the Ebola epidemic. In the Polar domain, the data is related to climate change scientific research
crawled from the Web. In TREC DD 2017, there were two domains: Ebola and News. The Ebola
domain was reused from TREC DD 2016. The news domain was based on the New York Times
collection where the topics are 60 analytical and intellectual search tasks. In our analysis, for TREC
DD 2017, we only use the New York Times collection.

Data prepossessing and indexing. In both collections, we will use the ground truth to simulate
user feedback. However, the track actual relevance judgments are subtopic, passage, and graded
relevance judgments. Therefore, we need to transform them from fine to more coarse granularities.
To achieve that we perform the following:

• Passage to document conversion: Any document is relevant if it contains any relevant passage.
To convert graded relevance at the passage level to the document level, we aggregate relevance
grades of the passages using the arithmetic mean.

• Aspect to topic : A document is relevant to the query if it contains any relevant information
to any aspect.

We created a separate index for each domain collection and ran the search systems on these
isolated indices. In TREC DD 2016, we first extracted the main content of the web pages using the
Boilerpipe extraction library, then indexed the content.5 In TREC DD 2017, we concatenated the
title and body content of the news articles. We normalized texts with the English Porter stemmer,
lower casing, and stop-word6 removal in all collections. We applied the same steps when processing
5We use a fork version of the library found at https://github.com/aalbahem/boilerpipe/tree/v.2.1
6We used the default Lucene English stop-word list supplied in version 8.0.0.
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the user queries or the user feedback. In particular, we further cleaned any text HTML entities or
tags found in the user feedback.
In the search process, the initial retrieval methods were performed using the Lucene library.7

For 𝑅𝑀3, we use the default implementation of the Anserini toolkit.8 We then implement all other
methods discussed in Section 3.2.

5 ANOVA MODELS AND ANALYSIS
In this section, we gradually introduce a series of ANOVA models that allow us to estimate the
effects of factors outlined in Section 3.1.

5.1 Effects of the Topic and System Factors
In our first ANOVA model, we analyze search effectiveness based on the classical information
retrieval model that allows us to answer our first research question which is “What are the effects
of the topics and system factors on the performance of dynamic search?" The ANOVAmodel
is as follows:

Effectivness𝑖 𝑗 = 𝜇.. + topic𝑖 + system𝑗 + 𝜀𝑖 𝑗 , (18)
where 𝜇.. is the grand mean of all observations, topic𝑖 represents the 𝑖-th topic’s main effect, system𝑗

is the 𝑗-th system’s main effect, and 𝜀𝑖 𝑗 is the error committed by the model in predicting the
effectiveness metric score of the 𝑖-th topic for the 𝑗-th system. For TREC DD 2016, we estimated
the model using 100 systems and 53 topics. For TREC DD 2017, we estimated the model using 100
systems and 60 topics.
Table 4 reports the estimated effect size 𝜔2 [26] of the topic and system factors according to

many metrics based on the TREC DD 2016 and TREC DD 2017 collections. In each cell, we indicate
whether the effect of a factor is statistically significant with a p-value < 0.05, and the category of
the effect size such as small, medium, and large using the categorization followed in [25–27].9
From the table, we make several observations. First, both the topic and system factors have

statistically significant effects on the performance of search systems. The significance is consistent
across iterations, metrics, and collections. In addition, the effect of the topic is larger than that
of the system factor, which is the case also in ad hoc search [25, 27]. The system factor has a
statistically significant effect and a large or medium effect size in general. The effect is consistent
across iterations, collections, and metrics except for subtopic recall (st-rec) on TREC DD 2017.

5.2 Effects of System Components
In the previous section, the ANOVA model allowed us to estimate the effects of the topics and the
system factors. In this section, we introduce an ANOVA model that allows us to answer the second
research question (RQ 2). That is we aim to estimate the effects of the system-wise components.
As discussed in Section 3.1, each dynamic search system is composed of instantiations of three
components: Initial Ranker (IR), Dynamic Reranker (DR), and User Feedback Granularity (UFG).
The results above also showed that the system factor generally has large and statistically significant
effects on search performance. To investigate what contributes to the significant variance of
the system factor, we decompose the system factor in Equation 18 into factors that represent
7We use version 8.0.0
8We did not perform the document model clipping step. In the general implementation of RM3, we usually clip the final
relevance model induced from all relevant documents, that is keeping the top 𝑛 weighted terms of the model and discard the
rest. However, in the Anserini toolkit, each document model is also clipped to 10-terms, a step that is not widely adopted or
reported in the literature. As a result, we only clipped the model after inducing it from the relevant documents
9The complete ANOVA tables for each metric with various ANOVA measures such as Sum of Squares, Mean Squares,
F-statistic, P-value and effect size 𝜔2 are all reported in the Appendix.
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Table 4. Effects of factors of Equation 18, on TREC Dynamic Domain collections. Each cell reports the effect
size 𝜔2 for each factor, and within parentheses, the p-value for the effect. Small effects are in light blue;
medium effects are in blue; and large effects are in dark blue.

Iter Effects prec st-rec 𝛼-nDCG nCT

TREC DD 2016

1 Topic 0.5910 (0.00) 0.6088 (0.00) 0.6130 (0.00) 0.6131 (0.00)
1 System 0.2140 (0.00) 0.1683 (0.00) 0.2370 (0.00) 0.1788 (0.00)

2 Topic 0.6071 (0.00) 0.6201 (0.00) 0.6430 (0.00) 0.6177 (0.00)
2 System 0.2019 (0.00) 0.1402 (0.00) 0.2125 (0.00) 0.1356 (0.00)

5 Topic 0.7169 (0.00) 0.5706 (0.00) 0.6654 (0.00) 0.6281 (0.00)
5 System 0.1698 (0.00) 0.1253 (0.00) 0.2424 (0.00) 0.1129 (0.00)

10 Topic 0.7997 (0.00) 0.5976 (0.00) 0.6719 (0.00) 0.7378 (0.00)
10 System 0.1179 (0.00) 0.0761 (0.00) 0.2481 (0.00) 0.0986 (0.00)

TREC DD 2017

1 Topic 0.7013 (0.00) 0.6761 (0.00) 0.7176 (0.00) 0.8056 (0.00)
1 System 0.3232 (0.00) 0.1494 (0.00) 0.2595 (0.00) 0.2426 (0.00)

2 Topic 0.7337 (0.00) 0.6002 (0.00) 0.6999 (0.00) 0.8269 (0.00)
2 System 0.2158 (0.00) 0.0865 (0.00) 0.2161 (0.00) 0.1571 (0.00)

5 Topic 0.7403 (0.00) 0.5054 (0.00) 0.7039 (0.00) 0.8406 (0.00)
5 System 0.1623 (0.00) 0.0581 (0.00) 0.2388 (0.00) 0.1322 (0.00)

10 Topic 0.7803 (0.00) 0.4499 (0.00) 0.6954 (0.00) 0.8676 (0.00)
10 System 0.1508 (0.00) 0.0245 (0.00) 0.2484 (0.00) 0.1236 (0.00)

the components and their interaction effects. We model the main and interaction effects of the
system-wise components as follows:

Effectiveness𝑖 𝑗𝑘𝑙 = 𝜇.... +

Main effects︷                          ︸︸                          ︷
topic𝑖 + IR𝑗 + DR𝑘 + UFG𝑙

+

Interaction effect︷     ︸︸     ︷
IR𝑗 × DR𝑘 +

Interaction effect︷       ︸︸       ︷
IR𝑗 × UFG𝑙 +

Interaction effect︷        ︸︸        ︷
DR𝑘 × UFG𝑙 +

Interaction effect︷                ︸︸                ︷
IR𝑗 × DR𝑘 × UFG𝑙

+ 𝜀𝑖 𝑗𝑘𝑙 ,

(19)

where 𝜇.... is grand mean of all observations, topic𝑖 represents the topic’s main effect, and IR𝑗 is the
effect of the initial ranker, DR𝑘 is the effect of the dynamic reranker, UFG𝑙 is the effect of the user
feedback granularity condition, and × indicates an interaction effect. We estimated the model using
five initial rankers, three dynamic rerankers and eight conditions of user feedback granularity —
see Section 3 for the summary of these components. In the following, we first describe the main
effects, then the interaction effects. In Section 5.3, we discuss the relation between the effect size
and the length of the search session in more details.
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5.2.1 Main effects. Table 5 presents the main effects of the individual components of a dynamic
search system based on the TREC DD 2016 and TREC DD 2017 collections.10 We omitted the effects
at iteration 1 because the initial ranker was the only factor that has effect, its effect is identical to
the effect of the system factor reported in Table 4.11 Overall all, comparing Table 5 to Table 4, we
can see that the system variance is largely due to the initial ranker factor (IR) as it has the most
prominent effect size.12 The effect is statistically significant with a noticeable effect size, generally
large or medium. The effects of the dynamic reranker and user feedback granularity factors differ
across iterations, metrics, and collections. In the following, we discuss in details the effects of the
individual factors.

Effects of the initial rankers. The statistically significant effect of the initial ranker on performance,
with a large effect size, might be due to the different ways in which initial rankers could impact the
search process.

The first way is that initial rankers determine inputs of dynamic rerankers. The performance of
a dynamic search system is directly affected by the initial ranked list produced by the initial ranker.
Moraes et al. [53] showed through prototyping initial rankers, with various levels of precision
and recall, that dynamic search systems need to have an initial ranker with high precision to
perform well in early iterations and a high recall initial ranker to perform well in late iterations. Our
analysis aligns with their findings. We found that the initial ranker factor has a large or medium
and significant effect at early and late iterations.

The second way initial rankers might impact on performance is to retrieve relevant documents
as early as possible. In the used dynamic rerankers discussed in Section 3.2, we have utilized only
positive feedback to rerank documents. Therefore, if no explicit positive feedback is found, we
present the next batch of documents from the initial ranked list of documents produced by the
initial reranker. As a result, for topics with zero precision at the first iteration, the initial rankers
are the only source of variance. Figure 3 reports the precision of the five initial rankers we used
in our experiments: BM25 [69], Divergence From Randomness (DFR) [6], Language Model (LM)
[56], relevance model [40] with Pseudo Relevance Feedback (PRF) and the Vector Space Model with
the TFIDF weighting. In the figure, we could see the performance of the initial rankers at the first
iteration varies greatly. For many topics, some methods are performing poorly with zero precision,
especially the TFIDF ranker.

The third way initial rankers could affect the performance is the number of relevant documents
they retrieve in the first iteration. Prior findings from the TREC Relevance Feedback track [11]
indicate that interactive search methods tend to improve with more relevant documents. As shown
in Figure 3, the initial rankers differ in the number of relevant documents retrieved, hence they
vary in their precision scores.

Effects of the dynamic rerankers. Concerning the effects of the dynamic reranker component, we
notice a statistically significant difference between the different dynamic rerankers in their ability to
retrieve relevant documents, measured by precision (prec). The effect size is more noticeable in TREC
DD 2017 than TREC DD 2016. The effect size is also generally larger than that of TREC DD 2016.
The larger effect size in TREC DD 2017 might be due to the ability of the initial rankers to retrieve
relevant documents at the first iteration. As discussed previously, many initial rankers perform
better in TREC DD 2017 as compared to their performances in TREC DD 2016. Therefore, with
10Following our approach in the previous section, we report only synthesized data of effect size, indicating statistical
significance and the category of the effect size. The complete ANOVA measures are provided in the Appendix.
11Recall, the user feedback is available only from the second iteration, hence the dynamic reranker will start to affect
performance from the second iteration.
12It also explains most of the system variance as indicated by the Sum Squared measure reported in the Appendix.
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Table 5. Effects of factors of Equation 19, on TREC DD collections. Each cell reports the effect size 𝜔2 for
each factor, and within parentheses, the p-value for the effect. Statistically insignificant effects, p-value ≥
0.05, are in gray; trivial effects are in white; small effects are in light blue; medium effects are in blue; and
large effects are in dark blue.

Iter Effects prec st-rec 𝛼-nDCG nCT

TREC DD 2016

2 IR 0.2065 (0.00) 0.1513 (0.00) 0.2230 (0.00) 0.1455 (0.00)
2 DR -0.0002 (0.81) 0.0000 (0.32) -0.0002 (0.76) 0.0001 (0.24)
2 UFG 0.0058 (0.00) -0.0008 (0.98) -0.0002 (0.58) -0.0001 (0.47)
2 IR x DR -0.0007 (0.87) -0.0010 (0.98) -0.0011 (1.00) -0.0010 (0.99)
2 IR x UFG -0.0040 (1.00) -0.0043 (1.00) -0.0043 (1.00) -0.0041 (1.00)
2 DR x UFG -0.0012 (0.95) -0.0014 (0.98) -0.0020 (1.00) -0.0019 (1.00)
2 IR x DR x UFG -0.0059 (1.00) -0.0072 (1.00) -0.0066 (1.00) -0.0074 (1.00)

5 IR 0.1553 (0.00) 0.1219 (0.00) 0.2490 (0.00) 0.1089 (0.00)
5 DR 0.0029 (0.00) 0.0085 (0.00) 0.0025 (0.00) 0.0087 (0.00)
5 UFG 0.0199 (0.00) 0.0049 (0.00) 0.0019 (0.01) 0.0059 (0.00)
5 IR x DR 0.0002 (0.30) -0.0004 (0.73) -0.0009 (0.97) -0.0007 (0.88)
5 IR x UFG -0.0043 (1.00) -0.0036 (1.00) -0.0043 (1.00) -0.0037 (1.00)
5 DR x UFG -0.0001 (0.49) -0.0013 (0.98) -0.0017 (1.00) -0.0010 (0.92)
5 IR x DR x UFG -0.0058 (1.00) -0.0046 (1.00) -0.0072 (1.00) -0.0063 (1.00)

10 IR 0.0897 (0.00) 0.0656 (0.00) 0.2522 (0.00) 0.0832 (0.00)
10 DR 0.0059 (0.00) 0.0191 (0.00) 0.0052 (0.00) 0.0189 (0.00)
10 UFG 0.0266 (0.00) 0.0021 (0.00) 0.0033 (0.00) 0.0078 (0.00)
10 IR x DR 0.0000 (0.42) -0.0008 (0.93) -0.0009 (0.96) -0.0008 (0.95)
10 IR x UFG -0.0043 (1.00) -0.0042 (1.00) -0.0043 (1.00) -0.0042 (1.00)
10 DR x UFG -0.0011 (0.93) -0.0011 (0.93) -0.0016 (1.00) -0.0013 (0.98)
10 IR x DR x UFG -0.0068 (1.00) -0.0044 (1.00) -0.0067 (1.00) -0.0052 (1.00)

TREC DD 2017

2 IR 0.2053 (0.00) 0.0889 (0.00) 0.2247 (0.00) 0.1586 (0.00)
2 DR 0.0078 (0.00) 0.0061 (0.00) 0.0011 (0.01) 0.0071 (0.00)
2 UFG 0.0014 (0.02) -0.0005 (0.84) -0.0007 (0.96) -0.0005 (0.87)
2 IR x DR 0.0007 (0.12) -0.0007 (0.91) -0.0010 (1.00) -0.0007 (0.96)
2 IR x UFG -0.0033 (1.00) -0.0034 (1.00) -0.0038 (1.00) -0.0038 (1.00)
2 DR x UFG -0.0002 (0.56) -0.0016 (1.00) -0.0017 (1.00) -0.0015 (1.00)
2 IR x DR x UFG -0.0061 (1.00) -0.0060 (1.00) -0.0068 (1.00) -0.0056 (1.00)

5 IR 0.1220 (0.00) 0.0590 (0.00) 0.2470 (0.00) 0.1331 (0.00)
5 DR 0.0217 (0.00) 0.0034 (0.00) 0.0009 (0.01) 0.0079 (0.00)
5 UFG 0.0039 (0.00) -0.0008 (0.98) -0.0007 (0.96) -0.0006 (0.90)
5 IR x DR 0.0035 (0.00) 0.0006 (0.14) -0.0009 (1.00) -0.0009 (0.99)
5 IR x UFG -0.0029 (1.00) -0.0032 (1.00) -0.0038 (1.00) -0.0037 (1.00)
5 DR x UFG -0.0002 (0.58) -0.0004 (0.67) -0.0003 (0.60) -0.0006 (0.80)
5 IR x DR x UFG -0.0042 (1.00) -0.0050 (1.00) -0.0056 (1.00) -0.0055 (1.00)

10 IR 0.0998 (0.00) 0.0224 (0.00) 0.2564 (0.00) 0.1185 (0.00)
10 DR 0.0228 (0.00) 0.0042 (0.00) 0.0009 (0.01) 0.0091 (0.00)
10 UFG 0.0077 (0.00) -0.0007 (0.95) -0.0006 (0.93) 0.0000 (0.39)
10 IR x DR 0.0038 (0.00) 0.0010 (0.06) -0.0009 (0.99) -0.0006 (0.90)
10 IR x UFG -0.0032 (1.00) -0.0028 (1.00) -0.0038 (1.00) -0.0036 (1.00)
10 DR x UFG -0.0004 (0.66) -0.0004 (0.69) -0.0015 (1.00) -0.0002 (0.54)
10 IR x DR x UFG -0.0054 (1.00) -0.0028 (0.98) -0.0049 (1.00) -0.0054 (1.00)

relevant documents, the dynamic reranker could start to affect performance early and propagate
that effect to later iterations.
Concerning the effects of dynamic rerankers on discovering new aspects of the user queries as

measured by subtopic recall (st-rec), we notice there is a statistically significant difference between
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(a) TREC DD 2016 (b) TREC DD 2017

Fig. 3. Precision (prec) at first iteration

the dynamic rerankers across iterations. This might be surprising, given that dynamic rerankers
discussed in Section 3.2 do not have a specific component to explore new subtopics. They operate
on the user feedback; hence we would expect to see more of the same aspects discovered. The
significant difference might be due to the query expansion used in some dynamic rerankers such as
the Relevance Model (RM). As documents could discuss multiple subtopics, the dynamic rerankers
might be able to implicitly pull documents relevant to unseen subtopics as the expanded or new
query representation might contain terms related to unseen subtopics. We could see in Figure 4 that
the Relevance Model (RM) reranker, a query expansion method, performs consistently better than
the other rerankers. In addition, the subtopic recall at the first iteration on TREC DD 2017, which
relies on the initial ranker only, is higher than that of TREC DD 2016. Therefore, the marginal
subtopic recall scores added might not be substantial if the initial rankers have high subtopic recall
as is the case with TREC DD 2017.
In terms of the overall system performance, the choice of the dynamic reranker does with

statistical significance affect performance. However, the effect size might differ based on how the
overall performance is measured. Using 𝛼-nDCG, which is a binary relevance-, and diversity-based
metric, we see the effect size is trivial. When measuring performance using the nCT metric, which
models graded-relevance, diversity, and effort, we see the dynamic reranker component has a larger
effect as compared to 𝛼-nDCG. The statistically significant difference in the overall performance, as
measured by nCT, indicates that the choice of dynamic reranker affects the ability of interactive
search systems to find documents with higher gains.

Effects of the user feedback granularity. We can make a few observations about the effect of
user feedback granularity. First, the granularity of user feedback might affect the ability of search
systems to retrieve relevant documents. The effects are larger in TREC DD 2016 as compared to
the effects in TREC DD 2017. Second, in terms of the effects of UFG in other qualities of search
performance, we see that it has significant effects in TREC DD 2016; The statistically significant
effects differ across iterations. However, in TREC DD 2017, it has no significant effects. We suspect
this might be due to the performance of the systems in precision. That is when there is a lower
performance in precision, it is helpful to have more granularity as it reduces the noise.

5.2.2 Effects of interaction between system components. Table 5 shows the effects of the interaction
between the system components for the TREC DD 2016 and TREC DD 2017 collections. In TREC DD
2016, we could see that no interaction has a statistically significant impact on search performance.
This is consistent across iterations and metrics. In TREC DD 2017, we observe similar trends
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(a) TREC DD 2016 (b) TREC DD 2017

Fig. 4. Subtopic recall (st-rec) of various dynamic rerankers as the search session progresses

except for the precision metric. The IR x DR interaction has a statistically significant effect on the
performance in mid to late iterations.

5.3 Effects of the System Components and the Search Session Length
A general trend we observed in Table 5 is the effects of the system components on performance
differ at different stages of the search session. In this section, we discuss this and seek to answer
the third research sub-question RQ 3.

Figure 5 depicts the effect of the Initial Ranker (IR) component on performance as users perform
multiple search iterations. We could see that the effect size of the initial ranker factor tends to
decrease as we progress through the search session except for 𝛼-nDCG where it fluctuates but still
has a large effect.
Concerning the effect of dynamic derankers (DR) (Figure 6), there are trends that could be

observed. In terms of precision, in both collections, the effect size gradually increases from early
to late iterations, and then it tends to decrease in the last two iterations. In TREC DD 2016, we
notice that it starts trivial and gradually increases as we progress in the search session. Concerning
the effects of dynamic rerankers on discovering new aspects of the user queries as measured by
subtopic recall (st-rec), the effect size gradually increases as we move across iterations, we notice
the effect size is generally larger than the effect size for precision in TREC DD 2016, and vice versa
in TREC DD 2017.
Concerning the effect of User Feedback Granularity (UFG), from Figure 7, we can make a few

observations about its effects. In both collections, the effect size gradually increases from early to
late iterations. Nevertheless, the effects are larger in TREC DD 2016 as compared to the effects in
TREC DD 2017. Second, in terms of the effects of UFG in other qualities of search performance, we
see that it has a significant effect in TREC DD 2016; where it has a statistically significant effect
from iteration 4 onward. However, in TREC DD 2017, it has no significant effects.
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(a) TREC DD 2016 (b) TREC DD 2017

Fig. 5. Effect size of the Initial Ranker (IR) factor as the search session progress

(a) TREC DD 2016 (b) TREC DD 2017

Fig. 6. Effect size of the Dynamic Reranker (DR) factor as the search session progress

5.4 Further Analysis
5.4.1 Effects of the initial ranker on precision. To investigate whether the precision at the first
iteration affects search performance at different iterations, we model the precision of the first
iteration in our ANOVA analysis. In particular, we perform the analysis using two factors: topic and
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(a) TREC DD 2016
(b) TREC DD 2017

Fig. 7. Effect size of the User Feedback Granularity (UFG) factor as the search session progress

search start, shown in Equation 20.

Effectivness𝑖 𝑗 = 𝜇.. + topic𝑖 + Search Start𝑗 + 𝜀𝑖 𝑗 . (20)

The Search Start factor borrows the concept of “cold start" [1] in recommendation systems where
the systems need to recommend items to users with no prior history. Similarly, we classify each
system based on its initial ranker performance at the first iteration: cold start and warm start. A
cold start means the initial ranker does not have relevant documents in the first iteration. A warm
start means the initial ranker has at least a relevant document in the first iteration. Note that with
the Search Start factor, the ANOVA analysis is not balanced since not all topics or systems will have
an equal number of cold or warm starts.
Tables 6 and 7 show the new ANOVA analysis; for presentation purposes, we do not report the

values for the topic factor as it is the same as the previous models. We can see from tables that the
Search Start factor has a statistically significant effect across metrics, iterations, and collections.
Furthermore, the effect size of the Search Start factor decreases as we progress through the search
session. This is expected as initial rankers might have relevant documents in iteration 2, 3 or 4,
hence the dynamic reranker might start to affect performance.

5.4.2 Effects of user feedback granularity dimensions. In the previous section, we found that user
feedback granularity has a statistically significant impact on performance. Recall that in Section 3,
we discuss three granularity dimensions: topic level granularity (topic or aspect), unit granularity
(document or passage), relevance scale granularity (binary or graded). Nevertheless, the question is
how do these dimensions contribute to the effect? To answer this research question, we construct
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Table 6. Effects of factors of Equation 20, on TREC DD 2016 collection. Redundant factors in previous models
are omitted for brevity.

Iter Effects prec st-rec 𝛼-nDCG nCT

2 Search Start 0.4364 (0.00) 0.3206 (0.00) 0.4590 (0.00) 0.3506 (0.00)

3 Search Start 0.3470 (0.00) 0.2220 (0.00) 0.4165 (0.00) 0.2637 (0.00)

4 Search Start 0.2803 (0.00) 0.1643 (0.00) 0.3888 (0.00) 0.2189 (0.00)

5 Search Start 0.2367 (0.00) 0.1489 (0.00) 0.3813 (0.00) 0.1932 (0.00)

6 Search Start 0.2009 (0.00) 0.1032 (0.00) 0.3677 (0.00) 0.1620 (0.00)

7 Search Start 0.1743 (0.00) 0.0728 (0.00) 0.3615 (0.00) 0.1279 (0.00)

8 Search Start 0.1520 (0.00) 0.0552 (0.00) 0.3554 (0.00) 0.1094 (0.00)

9 Search Start 0.1364 (0.00) 0.0545 (0.00) 0.3539 (0.00) 0.1040 (0.00)

10 Search Start 0.1215 (0.00) 0.0457 (0.00) 0.3530 (0.00) 0.0978 (0.00)

Table 7. Interaction effects of factors of Equation 20, on TREC DD 2017 collection. Redundant factors in
previous models are omitted for brevity.

Iter Effects prec st-rec 𝛼-nDCG nCT

1 Search Start 0.3149 (0.00) 0.4413 (0.00) 0.2966 (0.00) 0.2378 (0.00)

2 Search Start 0.2920 (0.00) 0.4102 (0.00) 0.3648 (0.00) 0.3188 (0.00)

3 Search Start 0.2387 (0.00) 0.2805 (0.00) 0.3503 (0.00) 0.2606 (0.00)

4 Search Start 0.1970 (0.00) 0.2336 (0.00) 0.3350 (0.00) 0.2281 (0.00)

5 Search Start 0.1520 (0.00) 0.1379 (0.00) 0.3109 (0.00) 0.1653 (0.00)

6 Search Start 0.1230 (0.00) 0.1157 (0.00) 0.2992 (0.00) 0.1307 (0.00)

7 Search Start 0.1048 (0.00) 0.0704 (0.00) 0.2931 (0.00) 0.1056 (0.00)

8 Search Start 0.0928 (0.00) 0.0608 (0.00) 0.2873 (0.00) 0.0779 (0.00)

9 Search Start 0.0871 (0.00) 0.0423 (0.00) 0.2817 (0.00) 0.0610 (0.00)

10 Search Start 0.0825 (0.00) 0.0364 (0.00) 0.2784 (0.00) 0.0522 (0.00)

an ANOVA model based on the topic and these dimensions as follows:

Effectiveness𝑖 𝑗𝑘𝑙 = 𝜇.... +

Main effects︷                           ︸︸                           ︷
topic𝑖 + LG𝑗 + UG𝑘 + RSG𝑙

+

Interaction effect︷       ︸︸       ︷
LG𝑗 × UG𝑘 +

Interaction effect︷       ︸︸       ︷
LG𝑗 × RSG𝑙 +

Interaction effect︷        ︸︸        ︷
UG𝑘 × RSG𝑙 +

Interaction effect︷                 ︸︸                 ︷
LG𝑗 × UG𝑘 × RSG𝑙

+ 𝜀𝑖 𝑗𝑘𝑙 ,

(21)
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where is 𝜇.... is the grand mean, topic𝑖 is the topic effect, LG𝑗 is topic level granularity effect, UG𝑘 is
the unit granularity effect, and RSG𝑙 is the relevance scale granularity effect.13

Table 8 shows the effect size for the various dimensions of the user feedback granularity and their
interactions. From the table, we could see that the unit granularity dimension has a statistically
significant effect on the ability of systems to retrieve relevant documents (see the prec column).
The effect tends to increase from early to late iterations. In the TREC DD 2016 collection, the
effect size is larger. The UG factor also has a statistically significant impact on all other search
qualities metrics. The LG and RSG factors occasionally have statistically significance, scattered
across iterations in both collections. In particular, LG seems to affect performance at the early
iterations, but RSG tends to affect performance at late iterations.

In terms of the interaction between the dimensions, only the interaction between all dimensions
is statistically significant, at late iterations in TREC DD 2017. In addition, the effect size is trivial.

5.5 Power Analysis
In our experiments, we utilized existing resources to estimate effects. As reported in the previous
sections, we observed a mix of different behaviors of the metrics and components. As a result,
in this section, we investigate the power of our experiments by performing a post-hoc statistical
power of the probability that the (ANOVA) test will correctly reject the null hypothesis. Using
the 𝜔2 we reported in the previous sections, we utilize G*Power14 to calculate the power of the
experiments. For the topic and system factors, in both collections, we found the power to be high;
thus, we omit reporting them here. In Table 9, we report the power analysis for the different factors.
From the table, we see that, for the initial ranker, we generally have a high power, which aligns
with its consistent larger effect sizes. For the other components, there is a high probability that we
might have committed a Type II error. In future work, we plan to investigate designing experiment
setups with more queries.

6 CONCLUSION AND FUTUREWORK
Dynamic search methods are complex information retrieval systems. Multiple factors, among
them the system components, have been found to affect their performance. However, research has
mainly followed a black-box evaluation that obscures estimating the effects of various factors on
performance. This study sought to address this research gap and answer the following question
What are the effects of the dynamic search components on performance?

To answer this question, we conducted an ANOVA-based analysis of various components: topics,
the initial ranker, the dynamic reranker, and user feedback granularity. We also implemented
and extended many dynamic reranking approaches to utilize various user feedback granularity
conditions. In summary, we built 100 systems and evaluated their performance in the TREC
Dynamic Domain collections using many metrics. We further divided the question above into three
sub-research questions. Our findings answer these questions as follows:

RQ 1: What are the effects of the topics and system factors on dynamic search performance? Both
the topics and the system factors generally have large and statistically significant effects. The topics
factor has larger effects than the system factor.

RQ 2: What are the effects of the dynamic search components such as the initial ranker, the dynamic
reranker, and user feedback granularity? The choice of instantiating any of the components has
13Ideally, we would include the initial reranker and dynamic reranker factors in the model as well. However, this would
make the model more complex and hard to interpret. As a result, we focus on the topic and user feedback granularity
dimensions.
14https://www.psychologie.hhu.de/arbeitsgruppen/allgemeine-psychologie-und-arbeitspsychologie/gpower
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Table 8. Effects of factors of Equation 21, on TREC DD 2016 and 2017 collections. Each cell reports the effect
size 𝜔2 for each factor, and within parentheses, the p-value for the effect. Statistically insignificant effects,
p-value ≥ 0.05, are in gray; trivial effects are in white; small effects are in light blue; medium effects are in
blue; and large effects are in dark blue.

Iter Effects prec st-rec 𝛼-nDCG nCT

TREC DD 2016

2 LG 0.0016 (0.00) -0.0001 (0.62) 0.0000 (0.29) 0.0001 (0.25)
2 UG 0.0043 (0.00) 0.0000 (0.30) 0.0003 (0.10) 0.0006 (0.03)
2 RSG -0.0001 (0.80) -0.0001 (0.80) -0.0002 (0.88) -0.0001 (0.83)
2 LG x UG -0.0000 (0.38) -0.0002 (0.89) -0.0001 (0.81) -0.0001 (0.73)
2 LG x RSG -0.0002 (0.91) -0.0002 (0.92) -0.0002 (0.89) -0.0002 (0.90)
2 UG x RSG -0.0001 (0.80) -0.0002 (0.91) -0.0002 (0.93) -0.0002 (0.88)
2 LG x UG x RSG -0.0002 (0.85) -0.0002 (0.97) -0.0002 (0.96) -0.0002 (0.93)

5 LG 0.0003 (0.08) -0.0001 (0.49) -0.0000 (0.32) 0.0001 (0.21)
5 UG 0.0189 (0.00) 0.0034 (0.00) 0.0018 (0.00) 0.0050 (0.00)
5 RSG -0.0000 (0.33) -0.0000 (0.38) -0.0001 (0.68) -0.0001 (0.47)
5 LG x UG -0.0001 (0.73) -0.0001 (0.66) -0.0001 (0.77) -0.0001 (0.59)
5 LG x RSG -0.0001 (0.56) -0.0001 (0.53) -0.0001 (0.71) -0.0001 (0.51)
5 UG x RSG -0.0001 (0.58) -0.0002 (0.92) -0.0002 (0.98) -0.0002 (0.91)
5 LG x UG x RSG -0.0001 (0.46) -0.0002 (0.96) -0.0002 (0.88) -0.0002 (0.97)

10 LG -0.0001 (0.77) -0.0001 (0.80) -0.0000 (0.41) -0.0001 (0.55)
10 UG 0.0291 (0.00) 0.0009 (0.01) 0.0017 (0.00) 0.0035 (0.00)
10 RSG 0.0005 (0.04) -0.0001 (0.49) -0.0001 (0.65) -0.0001 (0.51)
10 LG x UG -0.0002 (0.98) 0.0001 (0.18) -0.0000 (0.36) 0.0004 (0.05)
10 LG x RSG 0.0001 (0.23) 0.0001 (0.21) -0.0001 (0.52) 0.0000 (0.26)
10 UG x RSG 0.0002 (0.13) -0.0002 (0.89) -0.0002 (0.91) -0.0001 (0.67)
10 LG x UG x RSG 0.0003 (0.10) -0.0001 (0.66) -0.0001 (0.77) -0.0001 (0.59)

TREC DD 2017

2 LG 0.0027 (0.00) 0.0000 (0.30) 0.0001 (0.23) 0.0004 (0.05)
2 UG 0.0004 (0.06) -0.0000 (0.34) -0.0001 (0.50) 0.0000 (0.28)
2 RSG -0.0001 (0.47) -0.0001 (0.79) -0.0001 (0.87) -0.0001 (0.98)
2 LG x UG 0.0002 (0.12) -0.0001 (0.60) -0.0001 (0.53) -0.0000 (0.42)
2 LG x RSG -0.0001 (0.65) -0.0001 (0.60) -0.0001 (0.81) -0.0001 (0.62)
2 UG x RSG -0.0001 (0.85) -0.0001 (0.93) -0.0001 (0.95) -0.0001 (0.72)
2 LG x UG x RSG -0.0000 (0.41) -0.0001 (0.78) -0.0001 (0.89) -0.0001 (0.90)

5 LG -0.0001 (0.51) -0.0001 (0.51) -0.0001 (0.73) -0.0001 (0.85)
5 UG 0.0023 (0.00) -0.0001 (0.45) -0.0001 (0.45) 0.0002 (0.11)
5 RSG -0.0000 (0.33) -0.0001 (1.00) -0.0001 (0.88) -0.0001 (0.95)
5 LG x UG -0.0000 (0.32) -0.0001 (0.83) -0.0001 (0.57) -0.0001 (0.50)
5 LG x RSG 0.0002 (0.12) -0.0001 (0.96) -0.0001 (0.80) -0.0001 (0.74)
5 UG x RSG -0.0001 (0.47) -0.0001 (0.48) -0.0001 (0.96) -0.0001 (0.79)
5 LG x UG x RSG 0.0004 (0.05) -0.0001 (0.81) -0.0001 (0.87) -0.0001 (0.80)

10 LG 0.0002 (0.11) 0.0001 (0.17) -0.0001 (0.76) -0.0001 (0.73)
10 UG 0.0043 (0.00) -0.0000 (0.37) -0.0000 (0.36) 0.0004 (0.06)
10 RSG 0.0005 (0.03) -0.0001 (0.88) -0.0001 (0.90) -0.0001 (0.99)
10 LG x UG 0.0002 (0.11) -0.0001 (0.63) -0.0001 (0.52) -0.0000 (0.42)
10 LG x RSG -0.0000 (0.35) -0.0001 (0.94) -0.0001 (0.77) -0.0001 (0.62)
10 UG x RSG 0.0000 (0.26) -0.0001 (0.58) -0.0001 (0.95) -0.0001 (0.76)
10 LG x UG x RSG 0.0007 (0.01) -0.0001 (0.93) -0.0001 (0.93) -0.0001 (0.97)
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Table 9. Power analysis of the experiments for estimating the system components. Each cell reports the
experiment statistical power for each factor, within parentheses, and the effect size𝜔2 of the factor. Insufficient
power are in gray ( below 0.70); low power are in light blue (0.70-0.80); good power are in blue (0.80-0.90); and
high power are in dark blue (0.90-1.0).

Iter Effects prec st-rec 𝛼-nDCG nCT

2 IR 1.0000 (0.2065) 1.0000 (0.1513) 1.0000 (0.2230) 1.0000 (0.1455)
2 DR NA (-0.0002) 0.0500 (0.0000) NA (-0.0002) 0.0657 (0.0001)
2 UFG 0.05684 (0.0058) NA (-0.0008) NA (-0.0002) NA (-0.0001)

5 IR 1.0000 (0.1553) 1.0000 (0.1219) 1.0000 (0.2490) 1.0000 (0.1089)
5 DR 0.0538 (0.0029) 0.0840 (0.0085) 0.0525 (0.0025) 0.0780 (0.0087)
5 UFG 0.2349 (0.0199) 0.0545 (0.0049) 0.0507 (0.0019) 0.0566 (0.0059)

10 IR 1.0000 (0.0897) 0.9815 (0.0656) 1.0000 (0.2522) 1.000 (0.0832)
10 DR 0.3171 (0.0059) 0.5347 (0.0191) 0.0641 (0.0052) 0.2153 (0.0189)
10 UFG 0.2366 (0.0266) 0.7761 (0.0508) 0.0520 (0.0033) 0.0618 (0.0078)

TREC DD 2017

2 IR 1.0000 (0.2053) 1.0000 (0.0889) 1.0000 (0.2247) 1.0000 (0.1586)
2 DR 0.0784912 (0.0078) 0.0672 (0.0061) 0.0506 (0.0011) 0.0735 (0.0071)
2 UFG 0.05042 (0.0014) NA (-0.0005) NA (-0.0007) NA (-0.0005)

5 IR 1.0000 (0.1220) 0.9707 (0.0590) 1.0000 (0.2470) 1.0000 (0.1331)
5 DR 0.3047 (0.0217) 0.0552 (0.0034) 0.0504 (0.0009) 0.0792 (0.0079)
5 UFG 0.0532 (0.0039) NA (-0.0008) NA (-0.0007) NA (-0.0006)

10 IR 1.0000 (0.0998) 0.2447750 (0.0224) 1.0000 (0.2564) 1.0000 (0.1185)
10 DR 0.3327 (0.0228) 0.0580 (0.0042) 0.0504 (0.0009) 0.0893 (0.0091)
10 UFG 0.0630 (0.0077) NA (-0.0007) NA (-0.0006) 0.0500 (0.0000)

statistically significant effects on performance. However, their effects might depend on the session
length and the assessed search quality. The initial ranker has the most prominent and largest effect
size on performance on all metrics. We found that these effects might be due to the ability of the
initial rankers to retrieve relevant documents and to cover different aspects at the first or early
iterations. The dynamic reranker component generally affects performance, particularly in mid to
late iterations. The user feedback granularity also affects performance. Within the user feedback
granularity dimensions, the unit of information granularity has the most prominent effects.

The effects of the components also differ across search qualities such as relevance and diversity.
The initial ranker choice tends to affect all of them. The effects of the dynamic reranker and user
feedback granularity components tend to impact on the system’s ability to find relevant documents.
The dynamic reranker also might impact on the ability of the system to cover more subtopics and
find documents with more gains.

RQ 3: What are the effects of the factors as we progress in the search session? The effects of the
initial rankers generally start larger in early iterations and gradually decrease. The effects of the
dynamic reranker generally might start from the second iteration and gradually increase. Similarly,
the feedback granularity tends to increase gradually as the search session progresses and then
stabilizes at the session’s late stages.
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In summary, it is essential to study the characteristics of the components used in dynamic search
systems. In particular, the quality of the initial ranker in terms of precision and subtopic recall. As a
result, we recommend improving the quality of the initial ranker used to generate the initial ranked
list of documents and the dynamic approach that utilizes the user feedback before undertaking a
process to elicit more details from users, an option that might be expensive or invasive.
There several lines of work to extend this study. The ANOVA analysis can be performed to

estimate the effects of the quality of the initial ranker component in search effectiveness. Our
analysis showed that the initial ranker component’s precision at the first iteration contributes to
the statistically significant variance of effectiveness between dynamic search systems. Therefore, it
might be beneficial to perform the analysis using initial rankers with pre-determined effectiveness
levels of precision and subtopic recall. For instance, three levels for each metric can be defined:
high, medium, and low effectiveness scores. Then, one could have nine initial rankers with various
combinations of these levels. Another line of work is to analyze the effects of the system components
in other dynamic tasks. In our analysis, we used static topics and document collections. Recently, the
TREC COVID-19 track has focused on advancing dynamic search on scientific literature that focuses
on medical studies of the COVID-19 pandemic. Although the track uses a collection topically similar
to the Ebola epidemic dataset used in TREC DD 2016, it differs from the TREC Dynamic Domain
track in that the documents are dynamic. Medical researchers are adding new or removing old
documents daily. As a result, systems need to discover new subtopics that might emerge. Therefore,
we would expect the effect size of the dynamic reranker component to be larger. Future work also
includes the analysis of more sophisticated supervised learning approaches for dynamic search,
including neural-based ranking methods [20, 44, 51], diversity-aware learning-to-rank [57, 77], and
reinforcement learning [85]. Future work also includes experiments with larger test collections
in terms of the number of queries and the size of the document collection, such as the TREC
Session Track 2014 test collection [13]. Using larger datasets gives more statistical power to the
experiments and increases the reliability of the results. These experiments will require more human
resources and time to collect fine-grained explicit relevance judgments. Datasets with implicit
feedback introduce a few challenges, such as determining which aspect the user is looking at.
Another challenge is how we would induce or infer implicit feedback at the passage level. These
questions are interesting to explore. This is also applied to recently released test collections such as
the TianGong-ST dataset [16].
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Appendix A DETAILED ANOVA TABLES

Table 10. ANOVA analysis based on the nCT metric for Equation 18, on TREC DD 2016 collection. .

Iter Effects SS DF MS F p-value 𝜔2
𝑓 𝑎𝑐𝑡

1 Topic 18701.2561 52 359.6395 194.8446 0.000 0.6131
1 System 2738.4695 99 27.6613 14.9863 0.000 0.1788
1 Residual 9502.0562 5148 1.8458

2 Topic 124769.6474 52 2399.4163 198.6063 0.000 0.6177
2 System 13247.2718 99 133.8108 11.0759 0.000 0.1356
2 Residual 62194.3824 5148 12.0813

5 Topic 306185.1625 52 5888.1762 207.5622 0.000 0.6281
5 System 25771.1377 99 260.3145 9.1763 0.000 0.1129
5 Residual 146039.7728 5148 28.3683

10 Topic 535424.4085 52 10296.6232 345.1706 0.000 0.7378
10 System 23697.6350 99 239.3701 8.0243 0.000 0.0986
10 Residual 153567.5774 5148 29.8305

Table 11. ANOVA analysis based on the 𝛼-nDCG metric for Equation 18, on TREC DD 2016 collection. .

Iter Effects SS DF MS F p-value 𝜔2
𝑓 𝑎𝑐𝑡

1 Topic 24772.9312 52 476.4025 194.7508 0.000 0.6130
1 System 5075.6619 99 51.2693 20.9586 0.000 0.2370
1 Residual 12593.1208 5148 2.4462

2 Topic 205474.5960 52 3951.4345 221.3304 0.000 0.6430
2 System 32413.0444 99 327.4045 18.3388 0.000 0.2125
2 Residual 91907.7593 5148 17.8531

5 Topic 485470.2953 52 9335.9672 244.2164 0.000 0.6654
5 System 81595.9533 99 824.2015 21.5600 0.000 0.2424
5 Residual 196799.0387 5148 38.2283

10 Topic 657795.6751 52 12649.9168 251.4264 0.000 0.6719
10 System 110565.5974 99 1116.8242 22.1977 0.000 0.2481
10 Residual 259009.2328 5148 50.3126
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Table 12. ANOVA analysis based on the prec metric for Equation 18, on TREC DD 2016 collection. .

Iter Effects SS DF MS F p-value 𝜔2
𝑓 𝑎𝑐𝑡

1 Topic 400.2617 52 7.6973 177.7641 0.000 0.5910
1 System 79.2796 99 0.8008 18.4940 0.000 0.2140
1 Residual 222.9129 5148 0.0433

2 Topic 1050.1612 52 20.1954 189.9892 0.000 0.6071
2 System 181.5572 99 1.8339 17.2526 0.000 0.2019
2 Residual 547.2203 5148 0.1063

5 Topic 3468.9782 52 66.7111 310.7376 0.000 0.7169
5 System 300.5359 99 3.0357 14.1402 0.000 0.1698
5 Residual 1105.2055 5148 0.2147

10 Topic 7364.7351 52 141.6295 489.3870 0.000 0.7997
10 System 274.5746 99 2.7735 9.5835 0.000 0.1179
10 Residual 1489.8408 5148 0.2894

Table 13. ANOVA analysis based on the st-rec metric for Equation 18, on TREC DD 2016 collection. .

Iter Effects SS DF MS F p-value 𝜔2
𝑓 𝑎𝑐𝑡

1 Topic 5166.8770 52 99.3630 191.3617 0.000 0.6088
1 System 719.8913 99 7.2716 14.0043 0.000 0.1683
1 Residual 2673.0569 5148 0.5192

2 Topic 9287.6145 52 178.6080 200.6282 0.000 0.6201
2 System 1011.4528 99 10.2167 11.4763 0.000 0.1402
2 Residual 4582.9731 5148 0.8902

5 Topic 10473.2820 52 201.4093 163.5000 0.000 0.5706
5 System 1244.6295 99 12.5720 10.2057 0.000 0.1253
5 Residual 6341.6201 5148 1.2319

10 Topic 10739.5059 52 206.5290 182.6049 0.000 0.5976
10 System 704.2180 99 7.1133 6.2893 0.000 0.0761
10 Residual 5822.4668 5148 1.1310
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Table 14. ANOVA analysis based on the nCT metric for Equation 18, on TREC DD 2017 collection.

Iter Effects SS DF MS F p-value 𝜔2
𝑓 𝑎𝑐𝑡

1 Topic 519.2073 59 8.8001 535.4561 0.000 0.8141
1 System 50.3584 119 0.4232 25.7490 0.000 0.2903
1 Residual 115.3889 7021 0.0164

2 Topic 479.2006 59 8.1220 505.5517 0.000 0.8052
2 System 28.3055 119 0.2379 14.8056 0.000 0.1858
2 Residual 112.7973 7021 0.0161

5 Topic 352.7752 59 5.9792 613.1415 0.000 0.8338
5 System 15.2910 119 0.1285 13.1766 0.000 0.1675
5 Residual 68.4675 7021 0.0098

10 Topic 270.3234 59 4.5818 725.2077 0.000 0.8558
10 System 8.3586 119 0.0702 11.1178 0.000 0.1433
10 Residual 44.3576 7021 0.0063

Table 15. ANOVA analysis based on the 𝛼-nDCG metric for Equation 18, on TREC DD 2017 collection. .

Iter Effects SS DF MS F p-value 𝜔2
𝑓 𝑎𝑐𝑡

1 Topic 67065.2127 59 1136.6985 311.1331 0.000 0.7176
1 System 9581.4928 99 96.7828 26.4910 0.000 0.2595
1 Residual 21339.5997 5841 3.6534

2 Topic 854735.2180 59 14487.0376 285.6686 0.000 0.6999
2 System 105681.0863 99 1067.4857 21.0497 0.000 0.2161
2 Residual 296213.1479 5841 50.7127

5 Topic 1301893.1359 59 22065.9854 291.1080 0.000 0.7039
5 System 178722.5232 99 1805.2780 23.8163 0.000 0.2388
5 Residual 442747.7991 5841 75.8000

10 Topic 1336732.1441 59 22656.4770 279.5890 0.000 0.6954
10 System 200869.7997 99 2028.9879 25.0384 0.000 0.2484
10 Residual 473325.0474 5841 81.0349
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Table 16. ANOVA analysis based on the prec metric for Equation 18, on TREC DD 2017 collection.

Iter Effects SS DF MS F p-value 𝜔2
𝑓 𝑎𝑐𝑡

1 Topic 546.6208 59 9.2648 357.9661 0.000 0.7452
1 System 110.5088 119 0.9286 35.8804 0.000 0.3657
1 Residual 181.7152 7021 0.0259

2 Topic 449.3662 59 7.6164 407.2487 0.000 0.7690
2 System 52.2485 119 0.4391 23.4767 0.000 0.2709
2 Residual 131.3070 7021 0.0187

5 Topic 284.9547 59 4.8297 442.1653 0.000 0.7833
5 System 21.7121 119 0.1825 16.7038 0.000 0.2061
5 Residual 76.6899 7021 0.0109

10 Topic 225.4060 59 3.8204 604.0597 0.000 0.8317
10 System 12.8657 119 0.1081 17.0943 0.000 0.2101
10 Residual 44.4051 7021 0.0063

Table 17. ANOVA analysis based on the st-rec metric for Equation 18, on TREC DD 2017 collection.

Iter Effects SS DF MS F p-value 𝜔2
𝑓 𝑎𝑐𝑡

1 Topic 608.8919 59 10.3202 299.6996 0.000 0.7099
1 System 61.8281 119 0.5196 15.0882 0.000 0.1889
1 Residual 241.7692 7021 0.0344

2 Topic 423.2458 59 7.1737 205.5996 0.000 0.6264
2 System 36.0280 119 0.3028 8.6771 0.000 0.1126
2 Residual 244.9725 7021 0.0349

5 Topic 189.4492 59 3.2110 147.8690 0.000 0.5462
5 System 14.8394 119 0.1247 5.7426 0.000 0.0727
5 Residual 152.4624 7021 0.0217

10 Topic 88.8848 59 1.5065 105.6290 0.000 0.4616
10 System 4.7340 119 0.0398 2.7893 0.000 0.0287
10 Residual 100.1362 7021 0.0143
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Table 18. ANOVA analysis based on the nCT metric for Equation 19, on TREC DD 2016 collection. Redundant
factors in previous models are omitted for brevity. .

Iter Effects SS DF MS F p-value 𝜔2
𝑓 𝑎𝑐𝑡

1 IR 2738.4695 4 684.6174 377.1065 0.000 0.1913
1 DR 0.0000 2 0.0000 0.0000 1.000 -0.0003
1 UFG 0.0000 7 0.0000 0.0000 1.000 -0.0011
1 Residual 9502.0562 5234 1.8154

2 IR 12955.9912 4 3238.9978 271.7987 0.000 0.1455
2 DR 33.9100 2 16.9550 1.4228 0.241 0.0001
2 UFG 78.6926 7 11.2418 0.9433 0.471 -0.0001
2 Residual 62373.0604 5234 11.9169

5 IR 21948.0417 4 5487.0104 195.3916 0.000 0.1089
5 DR 1618.1144 2 809.0572 28.8104 0.000 0.0087
5 UFG 1262.9059 7 180.4151 6.4246 0.000 0.0059
5 Residual 146981.8486 5234 28.0821

10 IR 17188.7081 4 4297.1770 145.3810 0.000 0.0832
10 DR 3690.2699 2 1845.1350 62.4241 0.000 0.0189
10 UFG 1679.4511 7 239.9216 8.1170 0.000 0.0078
10 Residual 154706.7833 5234 29.5580

Table 19. ANOVA analysis based on the 𝛼-nDCG metric for Equation 19, on TREC DD 2016 collection.
Redundant factors in previous models are omitted for brevity. .

Iter Effects SS DF MS F p-value 𝜔2
𝑓 𝑎𝑐𝑡

1 IR 5075.6619 4 1268.9155 527.3914 0.000 0.2487
1 DR 0.0000 2 0.0000 0.0000 1.000 -0.0003
1 UFG 0.0000 7 0.0000 0.0000 1.000 -0.0011
1 Residual 12593.1208 5234 2.4060

2 IR 32164.9860 4 8041.2465 457.2448 0.000 0.2230
2 DR 9.7155 2 4.8578 0.2762 0.759 -0.0002
2 UFG 99.3871 7 14.1982 0.8073 0.581 -0.0002
2 Residual 92046.7151 5234 17.5863

5 IR 79668.8546 4 19917.2137 528.2495 0.000 0.2490
5 DR 672.5204 2 336.2602 8.9184 0.000 0.0025
5 UFG 709.9519 7 101.4217 2.6899 0.009 0.0019
5 Residual 197343.6650 5234 37.7042

10 IR 106650.9807 4 26662.7452 537.1524 0.000 0.2522
10 DR 1738.0579 2 869.0289 17.5076 0.000 0.0052
10 UFG 1384.6621 7 197.8089 3.9851 0.000 0.0033
10 Residual 259801.1296 5234 49.6372
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Table 20. ANOVA analysis based on the prec metric for Equation 19, on TREC DD 2016 collection. Redundant
factors in previous models are omitted for brevity. .

Iter Effects SS DF MS F p-value 𝜔2
𝑓 𝑎𝑐𝑡

1 IR 79.2796 4 19.8199 465.3720 0.000 0.2260
1 DR 0.0000 2 0.0000 0.0000 1.000 -0.0003
1 UFG 0.0000 7 0.0000 0.0000 1.000 -0.0011
1 Residual 222.9129 5234 0.0426

2 IR 174.3072 4 43.5768 414.8594 0.000 0.2065
2 DR 0.0455 2 0.0228 0.2166 0.805 -0.0002
2 UFG 4.6460 7 0.6637 6.3187 0.000 0.0058
2 Residual 549.7789 5234 0.1050

5 IR 251.3506 4 62.8377 293.4308 0.000 0.1553
5 DR 4.3404 2 2.1702 10.1341 0.000 0.0029
5 UFG 29.1989 7 4.1713 19.4785 0.000 0.0199
5 Residual 1120.8514 5234 0.2141

10 IR 182.9411 4 45.7353 157.7269 0.000 0.0897
10 DR 11.4525 2 5.7263 19.7481 0.000 0.0059
10 UFG 52.3450 7 7.4779 25.7888 0.000 0.0266
10 Residual 1517.6768 5234 0.2900

Table 21. ANOVA analysis based on the st-rec metric for Equation 19, on TREC DD 2016 collection. Redundant
factors in previous models are omitted for brevity. .

Iter Effects SS DF MS F p-value 𝜔2
𝑓 𝑎𝑐𝑡

1 IR 719.8913 4 179.9728 352.3972 0.000 0.1810
1 DR 0.0000 2 0.0000 0.0000 1.000 -0.0003
1 UFG 0.0000 7 0.0000 0.0000 1.000 -0.0011
1 Residual 2673.0569 5234 0.5107

2 IR 998.4197 4 249.6049 284.4666 0.000 0.1513
2 DR 2.0049 2 1.0025 1.1425 0.319 0.0000
2 UFG 1.4330 7 0.2047 0.2333 0.977 -0.0008
2 Residual 4592.5683 5234 0.8774

5 IR 1082.4113 4 270.6028 221.6998 0.000 0.1219
5 DR 68.7576 2 34.3788 28.1659 0.000 0.0085
5 UFG 46.5552 7 6.6507 5.4488 0.000 0.0049
5 Residual 6388.5256 5234 1.2206

10 IR 503.9750 4 125.9937 112.5606 0.000 0.0656
10 DR 141.0247 2 70.5124 62.9945 0.000 0.0191
10 UFG 23.0542 7 3.2935 2.9423 0.004 0.0021
10 Residual 5858.6308 5234 1.1193
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Table 22. ANOVA analysis based on the nCT metric for Equation 19, on TREC DD 2017 collection. Redundant
factors in previous models are omitted for brevity. .

Iter Effects SS DF MS F p-value 𝜔2
𝑓 𝑎𝑐𝑡

1 IR 4275.1925 4 1068.7981 610.0734 0.000 0.2528
1 DR 0.0000 2 0.0000 0.0000 1.000 -0.0003
1 UFG 0.0000 7 0.0000 0.0000 1.000 -0.0010
1 Residual 10383.6138 5927 1.7519

2 IR 17897.3963 4 4474.3491 340.3333 0.000 0.1586
2 DR 704.9115 2 352.4558 26.8089 0.000 0.0071
2 UFG 41.2324 7 5.8903 0.4480 0.872 -0.0005
2 Residual 77922.0553 5927 13.1470

5 IR 31503.2420 4 7875.8105 277.4187 0.000 0.1331
5 DR 1682.1200 2 841.0600 29.6256 0.000 0.0079
5 UFG 81.3201 7 11.6172 0.4092 0.897 -0.0006
5 Residual 168265.2730 5927 28.3896

10 IR 29852.1425 4 7463.0356 243.0811 0.000 0.1185
10 DR 2089.9938 2 1044.9969 34.0370 0.000 0.0091
10 UFG 225.6535 7 32.2362 1.0500 0.394 0.0000
10 Residual 181969.7571 5927 30.7018

Table 23. ANOVA analysis based on the 𝛼-nDCG metric for Equation 19, on TREC DD 2017 collection.
Redundant factors in previous models are omitted for brevity. .

Iter Effects SS DF MS F p-value 𝜔2
𝑓 𝑎𝑐𝑡

1 IR 9581.4928 4 2395.3732 665.3066 0.000 0.2696
1 DR 0.0000 2 0.0000 0.0000 1.000 -0.0003
1 UFG 0.0000 7 0.0000 0.0000 1.000 -0.0010
1 Residual 21339.5997 5927 3.6004

2 IR 104646.5821 4 26161.6455 522.7022 0.000 0.2247
2 DR 494.8749 2 247.4375 4.9437 0.007 0.0011
2 UFG 101.8780 7 14.5540 0.2908 0.958 -0.0007
2 Residual 296650.8991 5927 50.0508

5 IR 177047.2750 4 44261.8187 591.3432 0.000 0.2470
5 DR 635.5982 2 317.7991 4.2458 0.014 0.0009
5 UFG 153.6862 7 21.9552 0.2933 0.957 -0.0007
5 Residual 443633.7629 5927 74.8496

10 IR 198987.8938 4 49746.9734 621.6263 0.000 0.2564
10 DR 688.0816 2 344.0408 4.2991 0.014 0.0009
10 UFG 197.9946 7 28.2849 0.3534 0.929 -0.0006
10 Residual 474320.8771 5927 80.0271
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Table 24. ANOVA analysis based on the prec metric for Equation 19, on TREC DD 2017 collection. Redundant
factors in previous models are omitted for brevity.

Iter Effects SS DF MS F p-value 𝜔2
𝑓 𝑎𝑐𝑡

1 IR 110.5088 4 27.6272 1083.5585 0.000 0.3756
1 DR 0.0000 2 0.0000 0.0000 1.000 -0.0003
1 UFG 0.0000 7 0.0000 0.0000 1.000 -0.0010
1 Residual 181.7152 7127 0.0255

2 IR 47.3003 4 11.8251 628.0455 0.000 0.2584
2 DR 1.3519 2 0.6759 35.9003 0.000 0.0096
2 UFG 0.7135 7 0.1019 5.4136 0.000 0.0043
2 Residual 134.1897 7127 0.0188

5 IR 16.1582 4 4.0395 358.6825 0.000 0.1658
5 DR 1.6047 2 0.8024 71.2445 0.000 0.0191
5 UFG 0.3737 7 0.0534 4.7398 0.000 0.0036
5 Residual 80.2654 7127 0.0113

10 IR 8.5949 4 2.1487 324.0873 0.000 0.1522
10 DR 1.0238 2 0.5119 77.2085 0.000 0.0207
10 UFG 0.3994 7 0.0571 8.6065 0.000 0.0073
10 Residual 47.2526 7127 0.0066

Table 25. ANOVA analysis based on the st-rec metric for Equation 19, on TREC DD 2017 collection. Redundant
factors in previous models are omitted for brevity.

Iter Effects SS DF MS F p-value 𝜔2
𝑓 𝑎𝑐𝑡

1 IR 61.8281 4 15.4570 455.6506 0.000 0.2017
1 DR 0.0000 2 0.0000 0.0000 1.000 -0.0003
1 UFG 0.0000 7 0.0000 0.0000 1.000 -0.0010
1 Residual 241.7692 7127 0.0339

2 IR 33.7234 4 8.4309 244.1209 0.000 0.1190
2 DR 1.0365 2 0.5183 15.0066 0.000 0.0039
2 UFG 0.1055 7 0.0151 0.4366 0.880 -0.0005
2 Residual 246.1351 7127 0.0345

5 IR 13.3154 4 3.3289 154.4992 0.000 0.0786
5 DR 0.3894 2 0.1947 9.0375 0.000 0.0022
5 UFG 0.0379 7 0.0054 0.2510 0.972 -0.0007
5 Residual 153.5591 7127 0.0215

10 IR 3.5864 4 0.8966 63.2740 0.000 0.0334
10 DR 0.2468 2 0.1234 8.7072 0.000 0.0021
10 UFG 0.0481 7 0.0069 0.4850 0.846 -0.0005
10 Residual 100.9890 7127 0.0142
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Table 26. ANOVA analysis based on the nCT metric for Equation 19, on TREC DD 2016 collection. Redundant
factors in previous models are omitted for brevity. .

Iter Effects SS DF MS F p-value 𝜔2
𝑓 𝑎𝑐𝑡

1 IR x DR 0.0000 8 0.0000 0.0000 1.000 -0.0013
1 IR x UFG 0.0000 28 0.0000 0.0000 1.000 -0.0044
1 DR x UFG 44.7197 14 3.1943 0.5889 0.876 -0.0009
1 IR x DR x UFG 93.2696 56 1.6655 0.3071 1.000 -0.0061
1 Residual 28203.3123 5200 5.4237

2 IR x DR 63.1071 8 7.8884 0.2194 0.988 -0.0010
2 IR x UFG 71.2536 28 2.5448 0.0708 1.000 -0.0041
2 DR x UFG 69.4534 14 4.9610 0.1380 1.000 -0.0019
2 IR x DR x UFG 323.6378 56 5.7792 0.1607 1.000 -0.0074
2 Residual 186964.0297 5200 35.9546

5 IR x DR 326.6369 8 40.8296 0.4695 0.878 -0.0007
5 IR x UFG 409.5047 28 14.6252 0.1682 1.000 -0.0037
5 DR x UFG 643.0939 14 45.9353 0.5282 0.918 -0.0010
5 IR x DR x UFG 1427.2082 56 25.4859 0.2931 1.000 -0.0063
5 Residual 452224.9353 5200 86.9663

10 IR x DR 353.9503 8 44.2438 0.3339 0.953 -0.0008
10 IR x UFG 160.2934 28 5.7248 0.0432 1.000 -0.0042
10 DR x UFG 737.3077 14 52.6648 0.3975 0.976 -0.0013
10 IR x DR x UFG 3062.7471 56 54.6919 0.4128 1.000 -0.0052
10 Residual 688991.9859 5200 132.4985
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Table 27. ANOVA analysis based on the 𝛼-nDCG metric for Equation 19, on TREC DD 2016 collection.
Redundant factors in previous models are omitted for brevity. .

Iter Effects SS DF MS F p-value 𝜔2
𝑓 𝑎𝑐𝑡

1 IR x DR 0.0000 8 0.0000 0.0000 1.000 -0.0013
1 IR x UFG 0.0000 28 0.0000 0.0000 1.000 -0.0044
1 DR x UFG 31.5837 14 2.2560 0.3140 0.993 -0.0015
1 IR x DR x UFG 118.3238 56 2.1129 0.2940 1.000 -0.0063
1 Residual 37366.0520 5200 7.1858

2 IR x DR 65.6145 8 8.2018 0.1434 0.997 -0.0011
2 IR x UFG 47.6570 28 1.7020 0.0298 1.000 -0.0043
2 DR x UFG 59.1255 14 4.2233 0.0738 1.000 -0.0020
2 IR x DR x UFG 822.3314 56 14.6845 0.2568 1.000 -0.0066
2 Residual 297382.3553 5200 57.1889

5 IR x DR 311.5450 8 38.9431 0.2968 0.967 -0.0009
5 IR x UFG 117.6373 28 4.2013 0.0320 1.000 -0.0043
5 DR x UFG 388.3127 14 27.7366 0.2114 0.999 -0.0017
5 IR x DR x UFG 1390.2427 56 24.8258 0.1892 1.000 -0.0072
5 Residual 682269.3340 5200 131.2056

10 IR x DR 437.5402 8 54.6925 0.3102 0.963 -0.0009
10 IR x UFG 102.2912 28 3.6533 0.0207 1.000 -0.0043
10 DR x UFG 645.5579 14 46.1113 0.2615 0.997 -0.0016
10 IR x DR x UFG 2441.8690 56 43.6048 0.2473 1.000 -0.0067
10 Residual 916804.9079 5200 176.3086
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Table 28. ANOVA analysis based on the prec metric for Equation 19, on TREC DD 2016 collection. Redundant
factors in previous models are omitted for brevity. .

Iter Effects SS DF MS F p-value 𝜔2
𝑓 𝑎𝑐𝑡

1 IR x DR 0.0000 8 0.0000 0.0000 1.000 -0.0013
1 IR x UFG 0.0000 28 0.0000 0.0000 1.000 -0.0044
1 DR x UFG 0.5610 14 0.0401 0.3344 0.990 -0.0015
1 IR x DR x UFG 1.6205 56 0.0289 0.2415 1.000 -0.0067
1 Residual 623.1746 5200 0.1198

2 IR x DR 1.1713 8 0.1464 0.4766 0.874 -0.0007
2 IR x UFG 0.8754 28 0.0313 0.1018 1.000 -0.0040
2 DR x UFG 1.9711 14 0.1408 0.4583 0.955 -0.0012
2 IR x DR x UFG 5.6501 56 0.1009 0.3284 1.000 -0.0059
2 Residual 1597.3815 5200 0.3072

5 IR x DR 8.4212 8 1.0526 1.1967 0.297 0.0002
5 IR x UFG 0.9287 28 0.0332 0.0377 1.000 -0.0043
5 DR x UFG 11.8830 14 0.8488 0.9649 0.487 -0.0001
5 IR x DR x UFG 17.0248 56 0.3040 0.3456 1.000 -0.0058
5 Residual 4574.1837 5200 0.8797

10 IR x DR 13.9191 8 1.7399 1.0218 0.417 0.0000
10 IR x UFG 1.1492 28 0.0410 0.0241 1.000 -0.0043
10 DR x UFG 11.9941 14 0.8567 0.5031 0.933 -0.0011
10 IR x DR x UFG 22.4590 56 0.4011 0.2355 1.000 -0.0068
10 Residual 8854.5760 5200 1.7028
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Table 29. ANOVA analysis based on the st-rec metric for Equation 19, on TREC DD 2016 collection. Redundant
factors in previous models are omitted for brevity. .

Iter Effects SS DF MS F p-value 𝜔2
𝑓 𝑎𝑐𝑡

1 IR x DR 0.0000 8 0.0000 0.0000 1.000 -0.0013
1 IR x UFG 0.0000 28 0.0000 0.0000 1.000 -0.0044
1 DR x UFG 7.6901 14 0.5493 0.3643 0.984 -0.0014
1 IR x DR x UFG 32.2662 56 0.5762 0.3822 1.000 -0.0055
1 Residual 7839.9340 5200 1.5077

2 IR x DR 5.0644 8 0.6330 0.2373 0.984 -0.0010
2 IR x UFG 1.9787 28 0.0707 0.0265 1.000 -0.0043
2 DR x UFG 14.1445 14 1.0103 0.3788 0.981 -0.0014
2 IR x DR x UFG 28.4629 56 0.5083 0.1905 1.000 -0.0072
2 Residual 13870.5876 5200 2.6674

5 IR x DR 17.0097 8 2.1262 0.6575 0.729 -0.0004
5 IR x UFG 16.6634 28 0.5951 0.1840 1.000 -0.0036
5 DR x UFG 17.9841 14 1.2846 0.3973 0.976 -0.0013
5 IR x DR x UFG 86.4810 56 1.5443 0.4776 1.000 -0.0046
5 Residual 16814.9022 5200 3.2336

10 IR x DR 9.6834 8 1.2104 0.3800 0.932 -0.0008
10 IR x UFG 3.6348 28 0.1298 0.0408 1.000 -0.0042
10 DR x UFG 22.9221 14 1.6373 0.5141 0.927 -0.0011
10 IR x DR x UFG 89.9015 56 1.6054 0.5040 0.999 -0.0044
10 Residual 16561.9726 5200 3.1850
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Table 30. ANOVA analysis based on the nCT metric for Equation 19, on TREC DD 2017 collection. Redundant
factors in previous models are omitted for brevity. .

Iter Effects SS DF MS F p-value 𝜔2
𝑓 𝑎𝑐𝑡

1 IR x DR 0.0000 8 0.0000 0.0000 1.000 -0.0011
1 IR x UFG 0.0000 28 0.0000 0.0000 1.000 -0.0039
1 DR x UFG 37.5318 14 2.6808 0.2489 0.998 -0.0015
1 IR x DR x UFG 148.9421 56 2.6597 0.2470 1.000 -0.0059
1 Residual 63535.2846 5900 10.7687

2 IR x DR 237.0307 8 29.6288 0.3272 0.956 -0.0007
2 IR x UFG 77.5135 28 2.7683 0.0306 1.000 -0.0038
2 DR x UFG 281.9676 14 20.1405 0.2224 0.999 -0.0015
2 IR x DR x UFG 1425.6938 56 25.4588 0.2812 1.000 -0.0056
2 Residual 534226.8406 5900 90.5469

5 IR x DR 384.4718 8 48.0590 0.2257 0.986 -0.0009
5 IR x UFG 330.9131 28 11.8183 0.0555 1.000 -0.0037
5 DR x UFG 2004.7351 14 143.1954 0.6724 0.804 -0.0006
5 IR x DR x UFG 3586.4407 56 64.0436 0.3007 1.000 -0.0055
5 Residual 1256502.5475 5900 212.9665

10 IR x DR 959.3064 8 119.9133 0.4328 0.902 -0.0006
10 IR x UFG 530.2464 28 18.9374 0.0683 1.000 -0.0036
10 DR x UFG 3574.2195 14 255.3014 0.9214 0.535 -0.0002
10 IR x DR x UFG 4863.9376 56 86.8560 0.3135 1.000 -0.0054
10 Residual 1634757.5464 5900 277.0776
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Table 31. ANOVA analysis based on the 𝛼-nDCG metric for Equation 19, on TREC DD 2017 collection.
Redundant factors in previous models are omitted for brevity. .

Iter Effects SS DF MS F p-value 𝜔2
𝑓 𝑎𝑐𝑡

1 IR x DR 0.0000 8 0.0000 0.0000 1.000 -0.0011
1 IR x UFG 0.0000 28 0.0000 0.0000 1.000 -0.0039
1 DR x UFG 62.2907 14 4.4493 0.2969 0.994 -0.0014
1 IR x DR x UFG 214.0923 56 3.8231 0.2551 1.000 -0.0058
1 Residual 88404.8124 5900 14.9839

2 IR x DR 205.8870 8 25.7359 0.1319 0.998 -0.0010
2 IR x UFG 75.4253 28 2.6938 0.0138 1.000 -0.0038
2 DR x UFG 286.6464 14 20.4747 0.1050 1.000 -0.0017
2 IR x DR x UFG 1401.0110 56 25.0181 0.1282 1.000 -0.0068
2 Residual 1150948.3659 5900 195.0760

5 IR x DR 366.9551 8 45.8694 0.1551 0.996 -0.0009
5 IR x UFG 242.9576 28 8.6771 0.0293 1.000 -0.0038
5 DR x UFG 3558.8050 14 254.2004 0.8597 0.603 -0.0003
5 IR x DR x UFG 4600.0007 56 82.1429 0.2778 1.000 -0.0056
5 Residual 1744640.9350 5900 295.7019

10 IR x DR 457.1985 8 57.1498 0.1863 0.993 -0.0009
10 IR x UFG 213.6344 28 7.6298 0.0249 1.000 -0.0038
10 DR x UFG 917.9309 14 65.5665 0.2137 0.999 -0.0015
10 IR x DR x UFG 6419.5493 56 114.6348 0.3737 1.000 -0.0049
10 Residual 1810057.1915 5900 306.7894
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Table 32. ANOVA analysis based on the prec metric for Equation 19, on TREC DD 2017 collection. Redundant
factors in previous models are omitted for brevity.

Iter Effects SS DF MS F p-value 𝜔2
𝑓 𝑎𝑐𝑡

1 IR x DR 0.0000 8 0.0000 0.0000 1.000 -0.0011
1 IR x UFG 0.0000 28 0.0000 0.0000 1.000 -0.0039
1 DR x UFG 0.0000 14 0.0000 0.0000 1.000 -0.0019
1 IR x DR x UFG 0.0000 56 0.0000 0.0000 1.000 -0.0078
1 Residual 728.3360 7080 0.1029

2 IR x DR 0.8874 8 0.1109 1.3526 0.212 0.0004
2 IR x UFG 0.4892 28 0.0175 0.2130 1.000 -0.0031
2 DR x UFG 0.8967 14 0.0640 0.7809 0.691 -0.0004
2 IR x DR x UFG 0.6094 56 0.0109 0.1327 1.000 -0.0068
2 Residual 580.6732 7080 0.0820

5 IR x DR 1.4902 8 0.1863 3.6467 0.000 0.0029
5 IR x UFG 0.4834 28 0.0173 0.3380 1.000 -0.0026
5 DR x UFG 0.7888 14 0.0563 1.1031 0.349 0.0002
5 IR x DR x UFG 0.8131 56 0.0145 0.2843 1.000 -0.0056
5 Residual 361.6446 7080 0.0511

10 IR x DR 1.2944 8 0.1618 4.2458 0.000 0.0036
10 IR x UFG 0.2656 28 0.0095 0.2489 1.000 -0.0029
10 DR x UFG 0.7741 14 0.0553 1.4509 0.121 0.0009
10 IR x DR x UFG 0.5134 56 0.0092 0.2406 1.000 -0.0059
10 Residual 269.8111 7080 0.0381
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Table 33. ANOVA analysis based on the st-rec metric for Equation 19, on TREC DD 2017 collection. Redundant
factors in previous models are omitted for brevity.

Iter Effects SS DF MS F p-value 𝜔2
𝑓 𝑎𝑐𝑡

1 IR x DR 0.0000 8 0.0000 0.0000 1.000 -0.0011
1 IR x UFG 0.0000 28 0.0000 0.0000 1.000 -0.0039
1 DR x UFG 0.0000 14 0.0000 0.0000 1.000 -0.0019
1 IR x DR x UFG 0.0000 56 0.0000 0.0000 1.000 -0.0078
1 Residual 850.6611 7080 0.1201

2 IR x DR 0.2376 8 0.0297 0.3147 0.961 -0.0008
2 IR x UFG 0.3591 28 0.0128 0.1359 1.000 -0.0034
2 DR x UFG 0.0907 14 0.0065 0.0686 1.000 -0.0018
2 IR x DR x UFG 0.4751 56 0.0085 0.0899 1.000 -0.0071
2 Residual 668.2184 7080 0.0944

5 IR x DR 0.3961 8 0.0495 1.0252 0.414 0.0000
5 IR x UFG 0.2151 28 0.0077 0.1591 1.000 -0.0033
5 DR x UFG 0.1629 14 0.0116 0.2409 0.998 -0.0015
5 IR x DR x UFG 0.3226 56 0.0058 0.1193 1.000 -0.0069
5 Residual 341.9116 7080 0.0483

10 IR x DR 0.2528 8 0.0316 1.1836 0.305 0.0002
10 IR x UFG 0.1713 28 0.0061 0.2292 1.000 -0.0030
10 DR x UFG 0.2049 14 0.0146 0.5483 0.905 -0.0009
10 IR x DR x UFG 0.2238 56 0.0040 0.1497 1.000 -0.0067
10 Residual 189.0210 7080 0.0267
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