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ABSTRACT
Many evaluation metrics have been defined to evaluate the effec-

tiveness ad-hoc retrieval and search result diversification systems.

However, it is often unclear which evaluation metric should be used

to analyze the performance of retrieval systems given a specific task.

Axiomatic analysis is an informative mechanism to understand the

fundamentals ofmetrics and their suitability for particular scenarios.

In this paper, we define a constraint-based axiomatic framework to

study the suitability of existing metrics in search result diversifica-

tion scenarios. The analysis informed the definition of Rank-Biased

Utility (RBU) – an adaptation of the well-known Rank-Biased Pre-

cision metric – that takes into account redundancy and the user

effort associated to the inspection of documents in the ranking. Our

experiments over standard diversity evaluation campaigns show

that the proposed metric captures quality criteria reflected by dif-

ferent metrics, being suitable in the absence of knowledge about

particular features of the scenario under study.
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1 INTRODUCTION
The development of better information retrieval systems is driven

by how improvements are measured. The design of test collections

and evaluation metrics that started with the Cranfield paradigm

in the early 1960s allowed researchers to analyze the quality of

different retrieval models in an automated and cost-effective way.
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Since then, many evaluationmetrics have been proposed tomeasure

the effectiveness of information retrieval systems [20, 22, 27].

Selecting a suitable set of metrics for a specific task is challeng-

ing. Comparing metrics empirically against user satisfaction or

search effectiveness requires data that is often unavailable. More-

over, findings may be biased to the subjects, retrieval systems or

other experimental factors.

An alternative consists of modeling theoretically the desirable

properties of retrieval systems, as well as the abstraction of the

expected users’ behavior when performing a specific task. For in-

stance, a metric that looks at how early the relevant document is

retrieved in the ranking – such as Reciprocal Rank [26] – would be

an appropriate metric to analyze the performance of systems on

a single-item navigational task. However, is often challenging to

come up with the proper evaluation tools for more complex search

scenarios, as is the case of search result diversification [19]. In this

context, the ranking of retrieved documents must be optimized

in such a way that diverse query aspects are captured in the first

positions. The challenge is that the evaluation of system outputs

is affected by multiple variables such as: the deepness of ranking

positions, the amount of documents in the ranking related to the

same query aspect, relevance grades, the diversity of query aspects

captured by single documents or the user’s effort when inspecting

the ranking.

Axiomatic analysis has been shown to be an effective method-

ology to better understand the foundamentals of evaluation met-

rics [3, 4, 10, 25]. In the context of evaluation, axiomatic approaches

consist of a verifiable set of formal constraints that reflect which

quality factors are captured by metrics, facilitating the metric se-

lection in specific scenarios. To our knowledge, there is no compre-

hensive axiomatic analysis of the behavior of diversity metrics in

the literature. This paper provides a set of ten formal constraints

that focus on both retrieval and diversity quality dimensions.

We found that every constraint is satisfied at least by one met-

ric. However, none of the existing diversity metrics satisfy all the

proposed constraints simultaneously. In order to solve this gap, we

define the metric Rank-Biased Utility (RBU) by integrating com-

ponents from different metrics in order to capture every formal

constraints. RBU is an adaptation of the well-known Rank-Biased

Precision metric [16] that incorporates redundancy and the user’s

effort associated to the inspection of documents in the ranking. Our

experiments using standard diversity test collections validate our

axiomatic analysis. Results show that, satisfying every constraint

with a single metric leads to unanimous evaluation decisions when

compared against other existing metrics, i.e., RBU captures quality

criteria which are reflected by different metrics. Therefore, this met-

ric offers a solution in the absence of knowledge about the specific
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characteristic of a diversity-oriented retrieval scenario. Moreover,

the theoretical framework presented in this paper helps to decide

which metric should be used.

The paper is organized as follows. Section 2 describes related

work on evaluation of evaluation metrics. Section 3 introduces

the formal constraints that we propose to analyze relevance and

diversity properties of metrics. Section 4 provides a comprehensive

analysis of existing diversity metrics according to these constraints

and Section 5 defines the proposed RBUmetric. Section 6 details the

results of our experiments. Finally, Section 7 concludes the work.

2 RELATEDWORK
There is no consensus of meta-evaluation criteria for search re-

sult diversification. Some works inherit meta-evaluation criteria

from ad-hoc metrics such as sensitivity to system differences [11,

14, 17, 18]. This methodology however does not give information

about to what extent metrics capture diversity properties. Smucker

and Clarke [21] studied the correspondence between metric scores

and user effort when exploring document rankings. This methodol-

ogy has the advantage of being realistic – effort is calibrated from

historical log data – but only focuses on partial quality aspects.

Most of works on diversity metrics are supported by descrip-

tive analysis. In 2008, Clarke et al. [7] meta-evaluated α-nDCG by

analyzing the effect of modifying the diversity parameter α under

different datasets. One year later, Agrawal et al. [1] checked the

intent-aware scheme for diversification by studying the evaluation

results of three search engines. Clarke et al. [8] proposed Novelty-

and Rank-Biased Precision (NRBP), an extension of RBP [16] for

diversification, joining properties of the original RBP metric, α-
nDCG and intent-aware metrics. In 2010, Sakai et al. [17] compared

their proposed approach to α-NDCG and NRBP, in terms of met-

ric agreement under different parameters. The authors considered

some meta-evaluation criteria such as interpretability, computabil-

ity or capability to accommodate graded relevance and score ranges.

Three years later, Chandar and Carterette [5] evaluated their ap-

proach by studying correlation with previous metrics while reflect-

ing other ranking quality issues. Luo et al. [14] proposed the Cube

Test metric. They studied the effect of the metric parameters under

synthetic system outputs, in the same manner than Clarke et al. [7].

Tangsomboon and Leelanupab [23] in 2014 and also Yu et al. [31]

in 2017, supported their proposed metrics in terms of agreement

and disagreement with previous metrics.

Not many works define a way of quantifying the suitability of

metrics to capture diversity. An exception is the work by Golbus

et al. [11] who defined Document Selection Sensitivity. This meta-

measure reports to what extent metrics are sensitive to document

rankings containing relevant documents but different grades of

diversity. Within this line, we define in this work Metric Unanimity

(MU), which quantifies to what extent a metric is sensitive to quality

aspects captured by other existing metrics.

On the other hand, metrics have been successfully analyzed in

terms of formal constraints in ad-hoc retrieval scenarios [3, 10,

15]. The axiomatic methodology consists of identifying theoretical

situations in which metrics should behave in a particular manner.

This methodology has several strengths: it is objective, independent

from datasets and it facilitates the interpretation of metrics. We

found only a few initial works in the context of formal constraints

for search result diversification. For instance, Leelanupab et al. [13]

reviewed the appropriateness of intent-aware, stating an extreme

particular situation in which ERR-IA does not behave as expected.

In our work, we meta-evaluate existing metrics on the basis of

ten constraints that formalize desirable properties for ranking and

diversity effectiveness.

3 AXIOMATIC CONSTRAINTS
3.1 Problem Formalization
We formalize the output of a document retrieval system as an or-

dered list of documents d⃗ = (d1, . . . ,dn ) of length n, extracted from
a collection of documentsD. In order to express formal constraints,

we use d⃗i↔j to denote the result of swapping documents between

positions i and j. Likewise, d⃗d↔d ′ denotes the result of replacing

the document d with the document d ′ in the ranking d⃗ .
For search result diversification, we consider a set of query as-

pects T = {t1, . . . ,tm }. For instance, users searching for a restau-
rant may be interested in the menu, the offers, opening times, etc.

Each aspect has an associatedweightw (tj ) and the sum of all aspect

weights adds up to 1:

∑m
j=1w (tj ) = 1.

On the other hand, r (di ,tj ) ∈ [0 . . . 1] represents the graded

relevance of document di to the aspect tj . We assume the user’s be-

havior follows the cascade model, i.e., the user inspects the ranking

sequentially from the top to the bottom, until either (i) the user’s

information needs get satisfied or (ii) the user stops looking (i.e.,

user’s patience is exhausted). Following the same user model than

the one used by Expected Reciprocal Rank [6], we consider rele-

vance as the suitability of the document to satisfy the user needs,

which has a negative correspondence with the probability of explor-

ing more documents. Finally, we use Q (d⃗ ) to denote the ranking

quality score, i.e., the score given by applying an evaluation metric

Q to a given ranking d⃗ .
Our axiomatic approach consists of a set of ten formal constraints

that evaluation metrics may satisfy. These constraints are grouped

into two sets: relevance-oriented and diversity-oriented, that we

describe below.

In the definition of the constraints, we may refer to the follow-

ing conditions: single aspect ( |T | = 1); balanced aspects (∀t ∈
T .w (t ) = 1/|T |); binary relevance (∀t ,d . r (d,t ) ∈ {0,rc }); no as-
pect overlap (r (d,t ) > 0 ⇒ ∀t ′ , t . r (d,t ′) = 0); and relevance

contribution (r (d,t ) ≪ 1). The last condition means that finding

new relevant documents about the same topic is always effective.

In other words, there is always room for new documents to fully

satisfy the user needs.

3.2 Relevance-Oriented Constraints
In order to isolate relevance from diversity and redundancy, for

these constraints we will assume single aspect and relevance contri-

bution.

For the sake of legibility, we use the notation: r (d ) = r (d,t ). We

also denote drel and d¬rel as relevant and non-relevant documents,

respectively. That is: ∀i ∈ 1..n. r (d¬r eli ) = 0 and r (dr eli ) = rc .
Under these assumptions, we import the five constraints proposed



by Amigó et al. [3] which capture previous axiomatic properties [10,

15].

Constraint 1 (Priority, Pri). Swapping items in concordance

with their relevance increases the ranking quality score. Being k > 0:

r (di+k ) > r (di ) =⇒ Q
(
d⃗i↔i+k

)
> Q
(
d⃗
)

(1)

The next constraint is based on the intuition that the effect of rel-

evance depends on the document ranking position. This constraint

is also referred as top-heaviness:

Constraint 2 (Deepness, Deep). Correctly swapping contiguous

items has more effect in early ranking positions:

r (di ) = r (dj ) < r (di+1) = r (dj+1) =⇒ Q
(
d⃗i↔i+1

)
> Q
(
d⃗j↔j+1

)
(2)

where i < j.

The next constraint reflects that the effort spent by the user to

inspect a long (deep) list of search results is limited. In other words,

there is an area of the ranking that may never get explored by the

user:

Constraint 3 (Deepness Threshold, DeepTh). Assuming bi-

nary relevance, there exists a valuen large enough such that, retrieving
only one relevant document at the top of the ranking is better than

retrieving n relevant documents after n non-relevant documents:

∃n ∈ N+.Q
(
drel
1
, . . .
)
> Q
(
d¬rel
1
, . . . ,d¬reln ,drel

1
, . . . ,dreln

)
(3)

On the other hand, we can assume that there exists a (short)

ranking area which is always explored by the user. In other words,

at least a few documents are inspected by the user with a minimum

effort. This means that, at the top of the ranking, the amount of

captured relevant documents is more important than their relative

rank positions.

Constraint 4 (Closeness Threshold, CloseTh). Assuming

binary relevance, there exists a valuem small enough such that re-

trieving one relevant document in the first position is worse thanm
relevant documents afterm non-relevant documents:

∃m ∈ N+.Q
(
drel
1
, . . .
)
< Q
(
d¬rel
1
, . . . ,d¬relm ,drel

1
, . . . ,drelm

)
(4)

In some particular scenarios, however, this may not hold. For

instance, in audio-only search scenarios, search results may be

delivered sequentially one-at-a-time.

Finally, the amount of documents returned is also an aspect of

the system quality. In the same manner that capturing diversity

in the first positions is desirable, adding non-relevant documents

to the end of the ranking should be penalized by metrics. In other

words, the cutoff used by the system to stop returning search results

has also an impact on users. Therefore, adding noise at the bottom

of the ranking should decrease its effectiveness.

Constraint 5 (Confidence, Conf). Adding non-relevant docu-

ments decreases the score:

Q
(
d⃗
)
> Q
(
d⃗,d¬rel

)
(5)

3.3 Diversity-Oriented Constraints
The first diversity-oriented constraint is related to the fact that the

metric should be sensitive to the novelty of aspects covered by a

single document:

Constraint 6 (Query Aspect Diversity, AspDiv). Covering

more aspects in the same document (i.e., without additional effort of

inspecting more documents) increases the score. Assuming relevance

contribution (∀d,t . r (d,t ) ≪ 1):

∀t ∈ T .
(
r (d ′i ,t ) > r (di ,t )

)
=⇒ Q

(
d⃗di↔d ′i

)
> Q
(
d⃗
)

(6)

To calculate the gain obtained by observing a new relevant doc-

ument in the ranking, most of the existing diversity metrics take

into account the number of previously observed documents that are

related with the same aspect. The more an aspect has been covered

earlier in the ranking, the less a new document relevant to this

aspect contributes to the gain. Formally:

Constraint 7 (Redundancy, Red). Assuming binary relevance,

balanced aspects and no aspect overlap, and being d and d ′ documents

relevant to different aspects r (d,t ) = r (d ′,t ′) = rc , then:

|{di ∈ d⃗ . r (di ,t ) = rc }| > |{di ∈ d⃗ . r (di ,t
′) = rc }| =⇒

Q
(
d⃗,d ′
)
> Q
(
d⃗,d
) (7)

The Red constraint assumes binary relevance, by counting rele-

vant documents for each query aspect. In order to consider graded

relevance in previously observed documents, we can apply the

monotonicity principle. That is, if an aspect t is captured to a greater
extent than a second aspect t ′ in every previously observed docu-

ment, then the ranking is more redundant w.r.t. t than t ′. Formally:

Constraint 8 (Monotonic Redundancy, MRed). Assuming

two balanced aspects (T = {t ,t ′}), relevance contribution, and being
d and d ′ documents exclusively relevant to each aspect, 0 < r (d,t ) =
r (d ′,t ′) ≪ 1 and r (d,t ′) = r (d ′,t ) = 0:

∀di ∈ d⃗ .
(
r (di ,t ) > r (di ,t

′)
)
=⇒ Q

(
d⃗ ,d ′
)
> Q
(
d⃗,d
)

(8)

Intuitively, as well as the exploration capacity or patience of the

user is limited, the user’s information need is also finite. This means

that there should exists a certain point on which a new single piece

of information completely satisfies user’s information needs, in

such a way that retrieving any other documents addressing the

same query aspect is not beneficial. Formally:

Constraint 9 (Aspect Relevance Saturation, Sat). Assum-

ing no aspect overlap, there exists a finite relevance value rmax large

enough such that:

(r (dn ,t ) = rmax ) ∧ (r (dn+1,t ) > 0) =⇒

Q
(
d⃗
)
≥ Q
(
d⃗,dn+1

) (9)

Finally, the following constraint captures the relative weight of

aspectsw (t ) w.r.t. the user’s information need:

Constraint 10 (Aspect Relevance, AspRel). Aspects with higher

weights have more effect in score of the ranking quality. Formally,

assuming no aspect overlap, and being di and d ′i documents that

are relevant to different aspects that have not been observed before,

∀j < i . r (dj ,t ) = r (dj ,t
′) = 0, and r (di ,t ) = r (d

′
i ,t
′) > 0 then:

w (t ) < w (t ′) =⇒ Q
(
d⃗di↔d ′i

)
> Q
(
d⃗
)

(10)



In summary, we have defined a total of ten constraints: five

relevance-oriented constraints (Pri, Deep, DeepTh, CloseTh and

Conf), and five constraints for search result diversification (AspDiv,

Red, MRed, Sat, and AspRel). The next section provides an ax-

iomatic analysis of the most popular retrieval and diversity metrics

using these constraints.

4 METRIC ANALYSIS
In this section, we firstly analyze standard metrics designed to

evaluate retrieval systems in non-diversified scenarios (i.e., single-

aspect). Then we analyze the intent-aware family of metrics, as well

as a number of popular diversity metrics.

4.1 Standard Metrics for Ad-hoc Retrieval
We analyze here metrics that do not consider multiple aspects of a

query or topic, including: Precision at a cutoff k (P@k), Reciprocal
Rank (RR) [26], Average Precision (AP), Rank-Biased Precision

(RBP) [16], Expected Reciprocal Rank (ERR@k) [6] and Normalized

Discounted Cumulative Gain (nDCG@k) [12].
RBP uses a parameter p that defines user’s patience, modeled

as the probability of the user to inspect the next document in the

ranking. P@k , ERR and nDCG include a cutoff k that limits the

rank positions considered in the evaluation measurement.
1
The

upper part of Table 1 summarizes the properties for the retrieval

effectiveness metrics.

The constraints defined by Amigó et al. [3] assume that relevance

judgments are binary. However, our axiomatic framework defines

the constraints Pri and Deep over graded relevance (Eq. 1 and 2,

respectively). Therefore, RR, AP and P@k become undefined.
2

The rest of the analysis is inline with the one presented by Amigó

et al. [3]: The other metrics (nDCG@k ,ERR@k and RBP) satisfy Pri

and Deep constraints by applying a relevance discounting factor

depending on the depth of the ranking position. With regards to

DeepTh (Eq. 3) and CloseTh (Eq. 4) constraints, metrics that re-

wards relevance in deep ranking positions such as AP or nDCG@k
satisfy CloseTh but not DeepTh, while metrics that focus on the

top of the ranking (P@k, RR and ERR@k) satisfy DeepTh but not

CloseTh. RBP satisfies both CloseTh and DeepTh. The reason

is that RBP is supported by a probabilistic user behavior model

that takes into account the limitations of the ranking exploration

process (i.e., user’s patience). None of these metrics satisfy Conf.

This family of metrics are not applicable in the context of mul-

tiple query aspects. Therefore, they do not satisfy the diversity-

oriented constraints.

4.2 Intent-Aware Metrics
The intent-aware scheme [1] extends standard metrics such as AP

or ERR to make them applicable to diversification scenarios. Firstly,

each query aspect is evaluated independently and then a weighted

average considering query aspect weights is computed. BeingMt (d⃗ )

the score of d⃗ according to the metricM when only the relevance

1
Due to lack of space, here we focus on the formal properties of the metrics and we

provide references to the definition and explanation of the metrics.

2
Amigó et al. [3]’s analysis shows that P@k does not satisfy the Pri and Deep con-

straints, given that it does not consider the order of documents before position k .

to aspect t is considered:

M-IA(d⃗ ) =
∑
t ∈T

w (t )Mt (d⃗ )

The central part of Table 1 includes the properties for the intent-

aware version of the metrics discussed before. Intent-aware metrics

converge to the corresponding standard effectiveness metric when

the query has only one aspect. Consequently, they inherit the prop-

erties of the original metric over the relevance-oriented constraints

Pri, Deep, DeepTh and CloseTh.

Let us now analyze the diversification-oriented constraints. Be-

sides AP-IA@k , RR-IA and P-IA@k , which are undefined in the

context of graded relevance judgments, the intent-aware metrics

nDCG-IA@k , ERR-IA@k and RBP-IA satisfy the AspDiv constraint.

If a document is relevant for several aspects, then the averaged score

across query aspects increases.

Most of metrics do not satisfy Red and MRed. In the case of

P-IA@k , the precision averaged across aspects in a certain cutoff k
is independent from to which particular aspect the documents are

relevant to.
3
RR-IA@k neither satisfies Red given that is sensitive

only to the first relevant document for each query aspect. In the case

of AP-IA@k , the relevance contribution of a document to the aspect

t is higher if relevant documents for t have been observed earlier in

the ranking.
4
nDCG-IA@k and RBP-IA also fail to satisfy the Red

constraint. These two metrics are not sensitive to the relevance of

previously observed documents. The contribution of documents

depends on the rank position and the amount of relevant documents

in the collection.

On the other hand, the metric ERR-IA@k satisfies both Red and

MRed, due to the component

∏
j<i (1 − r (dj ,t )) which estimates

the probability of the user to be satisfied by previously observed

documents according to graded relevance levels.

The Sat constraint is not satisfied by P-IA@k , AP-IA@k , nDCG-
IA@k nor RBP-IA. The reason is that all these metrics reward new

relevant documents regardless the the gain obtained by previous

observed documents. However, the saturation relevance for RR-

IA@k and ERR-IA@k is 1. Finally, the AspRel constraint by all

the intent-aware metrics analyzed in this work, given that they all

consider the first relevant document for each aspect in the ranking

and all of them consider aspect weightsw (t ).

4.3 Other Diversity Metrics
Besides the intent-aware metrics (M-IA), other metrics have been

proposed to evaluate the effectiveness of search result diversifi-

cation systems [19]. Zhai et al. [32] proposed Subtopic Recall (S-

Recall@k), which measures the number of aspects captured in the

first k positions. Given that the metric only measures the coverage

of aspects, does not satisfy Pri,Deep, CloseTh and Conf relevance-

oriented constraints. The only diversity oriented constraint that

3
For instance, being ni the amount of relevant documents for the aspect ti , the average
P@k across aspects is:

1

|T |

∑
ti ∈T

ni
k ∝

∑
ti ∈T ni .

4
The contribution of a relevant document in AP is proportional to the precision

achieved at the document’s position, which is higher when relevant documents

appear in the previous positions. For instance, being Nr the fixed amount of rel-

evant documents for every aspect in the collection, and being dt , d ′t two doc-

uments related with aspect t , and dt ′ a document related with aspect t ′ then:
AP-IA@2(dt , d ′t ) = 1

1

Nr
+ 1 2

Nr
> 1

1

Nr
+ 1

2

1

Nr
= AP-IA@2(dt , dt ′ )



Table 1: Properties ( = constraint satisfied, #= constraint not satisfied) of existing retrieval and diversity effectiveness metrics.

Metric

Relevance-Oriented Constraints Diversity-Oriented Constraints

Pri Deep DeepTh CloseTh Conf AspDiv Red MRed Sat AspRel

P@k # #   # # # # # #
RR # #  # # # # # # #
AP # # #  # # # # # #
nDCG@k   #  # # # # # #
ERR@k    # # # # # # #
RBP     # # # # # #

P-IA@k # #   # # # # #  
RR-IA@k # #  # # # # #   
AP-IA   #  # # # # #  
nDCG-IA@k   #  #  # # #  
ERR-IA@k    # #      
RBP-IA     #  # # #  

S-Recall@k # #  # # # # #  #
S-RR@100% # #  # # # # #  #
NRBP     #   # # #
D#-Measure@k   #  #  # # #  
α-nDCG@k     #   # # #
EU        # #  
CT@k    # #   #   

RBU@k           

satisfies is Sat, given that S-Recall@k considers only the first rel-

evant document for each query aspect and it does not consider

aspect weights. Likewise, the metric S-RR@100% – an extension to

RR also proposed by Zhai et al. [32], defined as the inverse of the

rank position on which a complete coverage of aspects is obtained

– satisfies the same properties as S-Recall@k .
Clarke et al. [7] proposedNovelty-BiasedDiscounted Cumulative

Gain (α-nDCG@k).5 This metric is defined as:

α-nDCG@k (d⃗ ) =
k∑
i=1

∑
t ∈T r (di ,t ) (1 − α )

c (i,t )

log(i + 1)

where c (i,t ) represents the amount of documents previously ob-

served that capture the aspect t . Similarly to the original nDCG,

it satisfies Pri, Deep and CloseTh constraints. However, unlike

nDCG, DeepTh is also satisfied due to the redundancy factor (1 −

α )c (i,t ) , which also allows to satisfy Red. AspDiv is satisfied due

to the additive relevance across aspects. In contrast, α-nDCG@k
does not satisfy the constraintsMRed and Sat. The reason is that

the redundancy component (1 − α )c (i,t ) does not consider the rele-
vance grade of previously observed documents. Finally, this metric

does not consider the weight of aspects and therefore AspRel is

not satisfied.

Clarke et al. [8] proposed Novelty- and Rank-Biased Precision

(NRBP), and adaptation of RBP for search result diversification,

defined as:

NRBP(d⃗ ) =
∞∑
i=1

pi−1
∑
t ∈T

r (di ,t ) (1 − α )
c (i,t )

Similarly to the original RBP, NRBP satisfies all relevance-oriented

constraints except Conf, given that only relevant documents affect

the score. In terms of diversity-oriented constraints, NRBP behaves

5
Note that given that the proposed formal constraints and experiments in this work

compare metrics at topic (or query) level, the normalization factor in metrics such as

α -nDCG@k can be ignored.

similarly to α-nDCG@k given that diversification is modeled in

a similar manner. Sakai and Song [18] proposed the D#-Measure

which combines a D-Measure (e.g., D-nDCG [17]) with the ratio of

aspects captured in the first k positions (modeled by S-Recall@k):

D#-Measure@k (d⃗ ) = λ ·S-Recall@k (d⃗ )+ (1−λ) ·D-Measure@k (d⃗ )

NRBP inherits the properties from nDCG-IA@k , which already

satisfies DeepTh and AspRel. Therefore, the S-Recall@k compo-

nent does not contribute with any additional constraint satisfaction.

None of previous metrics satisfy Conf. However, there exist in

the literature utility-oriented metrics that penalyze non-relevant

documents at the end of the ranking. Two examples are the Nor-

malized Discounted Cumulated Utility (nDCU) [30], and the gen-

eralized version Expected Utility (EU) [29]. EU is very similar to

α-nDCG@k (d⃗ ) but includes a cost factor. Being e the estimated

effort for accessing one document, EU can be expressed as:

EU(d⃗ ) =

|d⃗ |∑
i=1

1

1 + log(i )
*.
,

∑
t ∈T

r (t )r (di ,t ) (1 − α )
c (i,t ) − e+/

-
EU inherits the α-nDCG@k (d⃗ ) properties, but capturing AspRel

and Conf. However EU does still not satisfyMRed and Sat.

The Cube Test metric (CT@k) [14] satisfies Sat by adding a

saturation factor. Assuming a linear time effort w.r.t. the amount of

inspected documents, CT@k can be expressed as:

CT@k (d⃗ ) =

|d⃗ |∑
i=1

1

i

∑
t ∈T

r (t )r (di ,t ) (1 − α )
c (i,t ) f

Sat

where f
Sat

is 0 or 1 depending if the sum of relevance of documents

for the aspect exceeds a certain saturation level. The reciprocal rank

discounting factor

(
1

i

)
affects the constraint CloseTh, rewarding

the positions of documents over the amount of relevant documents

in top area. In addition, Conf is neither satisfied. There is no con-

tribution or penalty for documents with zero relevance.



Table 1 also includes the proposed metric Rank-Biased Utility

(RBU), which we describe below.

5 RANK-BIASED UTILITY
The quality of a diversified ranking depends (at least) on the follow-

ing factors: (i) the position of relevant documents in the ranking;

(ii) the redundancy regarding each of the aspects covered by pre-

viously observed documents; (iii) the weights of the aspects seen

in the ranking and (iv) the effort – in terms of user cost or time –

derived from inspecting relevant or non-relevant documents. The

analysis described in Section 4 shows that none of the existing met-

rics take into account all these factors. To fill this gap, we propose

Ranking-Biased Utility (RBU), which satisfies all the retrieval and

diversity-oriented formal constraints (see proofs in the appendix).

The analysis shows that RBP [16] is the only metric that satisfies

the four first relevance constraints, while ERR-IA@k [1, 6] is the

only metric that satisfies all the five diversity-oriented constraints.

Expected Utility (EU) is the only that satisfies Conf, capturing the

suitability of the ranking cutoff.

In order to satisfy every constraint, RBU combines the user ex-

ploration deepness model from RBP with the redundancy modeled

in ERR-IA@k , and also adds the user effort component e in EU to

satisfy the Conf constraint.

The metrics RBP and ERR-IA@k can be combined together un-

der the following user behavior assumptions: (i) The user has a

probability p to explore the next document and (ii) the user has a

probability r (dj ,t ) to get gain from document dj for the topic t .
Similarly to the ERR-IA@k , the probability of being satisfied by

document di after observing the documents that occur earlier in

the ranking is:

r (di ,t )
i−1∏
j=1

(1 − r (dj ,t ))

Analogously to the user model followed by RBP, the resulting con-

tribution of a document di in the position i must be weighted

according to pi :

pir (di ,t )
i−1∏
j=1

(1 − r (dj ,t ))

In order to satisfy AspRel, the weighted sum of contributions

across aspects in T is:

pi
∑
t ∈T

w (t )r (di ,t )
i−1∏
j=1

(1 − r (dj ,t ))

And the cumulative gain across rank positions until k is:

RBU@k(d⃗ ) =
k∑
i=1

pi
∑
t ∈T

w (t )r (di ,t )
i−1∏
j=1

(
1 − r (dj ,t )

)
Similarly to EU, we define RBP in utility terms in order to capture

Conf. Being e the effort of observing a document, the rank biased

accumulated effort is weighted according to pi , that is:
(∑k

i=1 p
ie
)
.

Finally, combining the relevance contribution with the cumula-

tive effort, we obtain:

RBU@k(d⃗ ) =
k∑
i=1

pi *.
,

∑
t ∈T

*.
,
w (t )r (di ,t )

i−1∏
j=1

(
1 − r (dj ,t )

)+/
-
− e+/

-
(11)

RBU@k matches with the RBP-IA metric when assuming a zero

effort (e = 0), and a small contribution of documents in terms of

gain for query aspects,

r (di ,t ) ≪ 1 =⇒

i−1∏
j=1

(
1 − r (dj ,t )

)
≃ 1 =⇒

RBU@k(d⃗ ) =
∑
t ∈T

w (t )
∑
j≤i

(
pi−1r (di ,t )1

)
− 0 =

∑
t ∈T

w (t )RBPt (d⃗ )

On the other hand, RBU@k is equivalent to themetric ERR-IA@k
when the effort component is zero (e = 0), and the probability of

exploring the next document is maximal (p = 1):

k∑
i=1

1
i *.
,

∑
t ∈T

*.
,
w (t )r (di ,t )

i−1∏
j=1

(1 − r (dj ,t ))
+/
-
− 0

+/
-
=
∑
t ∈T

w (t )ERRt@k (d⃗ )

We now discuss the role of the effort component e , which repre-

sents the cost inherently associated to inspect a new document in

the ranking.
6
For instance, if e = 0.1 and the inspected document

di has a relevance of 0.1 to aspect ti , then the actual gain is zero:

r (di ,t )
∏
j<i

(
1 − r (dj ,t )

)
− e = 0.1

∏
j<i

(1 − 0) − 0.1 = 0

We have introduced RBU@k and shown that the proposed met-

ric satisfies all the relevance- and diversity-oriented formal con-

straints. The experiments described in the following sections com-

pare RBU@k to other metrics in the context of standard evaluation

campaigns for search result diversification.

6 EXPERIMENTS
We start defining our meta-evaluation metric. Then we evaluate the

metrics in different scenarios based on the TRECWeb Track 2014 ad-

hoc retrieval task [9], which includes search result diversification.

Finally, we corroborate our results under the context of the TREC

Dynamic Domain task [28].
7

6.1 Meta-evaluation: Metric Unanimity
We aim to quantify the ability of metrics to capture diversity in

addition to traditional ranking quality aspects. For this purpose, we

define the Metric Unanimity (MU). MU quantifies to what extent

a metric is sensitive to quality aspects captured by other existing

metrics. It follows a similar concept used by Strictness,
8
proposed

by Amigó et al. [3] for the ad-hoc retrieval scenario.

Our intuition is that, if a system improves another system for

every quality criteria, this should be unanimously reflected by every

metric. Ametric that captures all quality criteria should reflect these

improvements.

Considering the space of system output pair comparisons (i.e.,

Qd⃗ ) > Q (d⃗ ′)) and a set of metrics, MU can be formalized as the

Point-wise Mutual Information (PMI) between decisions of a metric

6
In this work, the effort of inspecting or judging a relevant or non-relevant document

is the same. We leave for future work the definition of formal constraints that consider

these differences [21, 24].

7
Releasable data and scripts used in these experiments are available at https://github.

com/jCarrilloDeAlbornoz/RBU. Diversity metrics and RBU are also included in the

EvALL evaluation framework [2] http://evall.uned.es/.

8
Strictness checks to what extent a metric can outscore metrics that achieve a low

score according to other metrics.

https://github.com/jCarrilloDeAlbornoz/RBU
https://github.com/jCarrilloDeAlbornoz/RBU
http://evall.uned.es/


Table 2:Metric Unanimity scores (MU) for the TREC Web Track 2014 ad-hoc retrieval task: official (Section 6.2) and simulated scenarios

(Section 6.3). Given that normalization has not effect in terms of formal constraints and MU, which work at topic (query) level, normalized

version of metrics behave similarly to the metric without normalization (e.g., MU(nDCG) = MU(DCG)) and therefore are not included.

Official

Simulated Scenarios

r ′(d ) = rand(0,r (d )) r ′(d ) = rand(0,r (d ))
r ′(t ) = rand(0,r (t )) r ′(t ) = rand(0,r (t ))

|d⃗ | = rand(0, |d⃗ |) |d⃗ | = rand(0,50)

RBUe={0.001,0.05,0.1,0.5},p=0.99 0.8024 RBUe={0.001,0.05,0.1,0.5},p=0.99 0.8568 RBUe={0.001,0.05,0.1,0.5},p={0.8,0.9,0.99} 0.9808

α-DCG-IA@1000α={0.1,0.25,0.5} 0.7956 α-DCG-IA@1000α={0.1,0.25,0.5,0.75} 0.7734 α-DCG-IA@{50,100,1000}α={0.1,0.25,0.5,0.75} 0.7709

DCG@1000 0.7956 DCG@1000 0.7734 DCG-IA@{50,100,1000} 0.7709

DCG-IA@1000 0.7956 DCG-IA@1000 0.7734 EUα={0.1,0.25,0.5,0.75},e={0,0.001,0.05,0.5} 0.7709

EUα={0.1,0.25,0.5},e={0,0.05,0.1,0.5} 0.7956 EUα={0.1,0.25,0.5,0.75},e={0,0.001,0.05,0.5} 0.7734 ERR-IA@{50,100,1000} 0.7709

ERR-IA@1000 0.7956 ERR-IA@1000 0.7734 NRBPp={0.8,0.9,0.99},α={0.1,0.25,0.5,0.75} 0.7709

ERR@1000 0.7956 ERR@1000 0.7734 DCG@{50,100,1000} 0.7687

NRBPp={0.8,0.9,0.99},α={0.1,0.25,0.5} 0.7956 AP 0.7734 ERR@{50,100,1000} 0.7679

AP 0.7926 AP-IA 0.7734 AP-IA 0.7642

AP-IA 0.7926 NRBPp={0.8,0.9,0.99},α={0.1,0.25,0.5,0.75} 0.7734 AP 0.7627

RBPp={0.8,0.9,0.99} 0.7911 RBPp=0.99 0.7717 RBPp={0.8,0.9,0.99} 0.7597

P-IA@20 0.7272 P@{20,50} 0.7103 P-IA@20 0.7077

P@20 0.7192 P-IA@{20,50} 0.7103 P-IA@10 0.6888

RR-IA 0.6835 RR-IA 0.6704 RR-IA 0.6841

RR 0.6486 RR 0.6082 RR 0.6561

S-Recall@10 0.3965 S-Recall@10 0.4238 S-Recall@10 0.5137

S-Recall@20 0.3538 S-Recall@20 0.4084 S-Recall@20 0.4994

S-Recall@50 0.3065 S-Recall@50 0.3658 S-Recall@100 0.4831

S-Recall@100 0.2478 S-Recall@100 0.3007 S-Recall@50 0.4831

and improvements reported simultaneously by the rest of metrics in

the set. Formally, let bem a metric,M the rest of metrics, and a set

of system outputs S. Being ∆mi,j and ∆Mi,j statistical variables

over system pairs (d⃗i ,d⃗j ) ∈ S
2
, indicating a system improvement

according to the metric and to the rest of metrics, respectively:
9

∆mi,j ≡m(d⃗i ) > m(d⃗j )

∆Mi,j ≡ ∀m ∈ M .
(
m(d⃗i ) ≥ m(d⃗j )

)
Then MU is formalized as:

MUM,S (m) = PMI

(
∆mi,j ,∆Mi,j

)
= log

(
P (∆mi,j ,∆Mi,j )

P (∆mi,j ) ·P (∆Mi,j )

)
Let us consider the following example illustrated by the Table

below:

m1 m2 m3

S1 1 0.8 1

S2 0.5 0.3 0.2

S3 0.2 0.4 0.5

The example consists of three metrics and three system outputs.

We now compute the MU of the metric m1
regarding the rest

of metrics M = {m2,m3}. Here, there are 6 sorted pairs of sys-

tem outputs: (S1,S2),(S2,S1), (S1,S3), etc. The improvements re-

ported bym1
are: ∆m1

1,2, ∆m
1

1,3, and ∆m1

2,3. The improvement re-

ported simultaneously by the other metrics are: ∆M1,2, ∆M1,3, and

9
The a priori probability of a system improvement for everymetric is fixed P (∆mi,j ) =
1

2
. That is, for the cases on which two system outputs obtain the same scorem (d⃗i ) =

m (d⃗j ), we add 0.5 to the statistical count.

∆M3,2.m
1
agrees withM in two cases. Therefore MUM (m1) =

log

(
2/6

3/6·3/6

)
= 0.415.

MU has four properties that we describe below.

Property 1. Capturing every unanimous improvement maxi-

mizes MU regardless the other decisions:

MUM,S (m) = log
*
,

P (∆mi,j ,∆Mi,j )
1

2
· k

+
-
∝ P (∆mi,j ,∆Mi,j )

Property 2. A metricm
rand

which assigns random or constant

scores to every system outputs achieves a zeroMU, capturing

the sensitivity of metrics:

MUM,S (mrand
) = log

*
,

1

2
· P (∆Mi,j )

1

2
· P (∆Mi,j )

+
-
= log(1) = 0

Property 3. MU is asymmetric. A metricm can be unanimous

regarding the rest of metrics, while the rest of metrics are

not.

MU {m2,m3 } (m1) , MU {m1,m3 } (m2) , MU {m1,m2 } (m3)

Property 4. MU is not affected by the predominance of a certain

family of metrics in the setM:

MUM∪{m′ },S (m) = MUM∪{m′,m′, ...,m′ },S (m)

6.2 Experiment 1: TRECWeb Track 2014
This first experiments aims to measure MU in a standard diversi-

fication evaluation campaign: the TREC Web Track 2014 ad-hoc

retrieval task [9]. In this benchmark, systems need to perform ad-

hoc retrieval from the ClueWeb-12 collection, for a total of 50 test

topics and return the top 10,000 documents. Some of the topics have



multiple aspects –therefore, diversified rankings may be more ef-

fective. We use the 30 official runs submitted to the ad-hoc retrieval

task and available at TREC’s website.

Using our own implementation of the metrics, we execute over

the official runs the following metrics: AP, RR, AP-IA and RR-IA

which do not require any parameter; P@k , ERR@k , NDCG@k and

their corresponding intent-aware variants, using k ∈ {10,20,50,
100,1000}; S-Recall@k , RBP, NRBP and α-nDCG@k ; with p ∈
{0.8,0.9,0.99} and α ∈ {0.1,0.25,0.5,0.75}; EU and our proposed

metric RBU with the effort parameter e ∈ {0.001,0.05,0.1,0.5}.
For metrics that do not accept multiple query aspects, we con-

sider themaximum relevance across aspects: r (d ) =maxt ∈T (r (d,t )).
The first column in Table 2 shows the metrics ranked by MU.

For the sake of clarity, the table includes for each metric the variant

with highest MU. Results show that metrics that satisfy only a

few constraints such as P@k or S-Recall@k are substantially less

unanimous than the rest of metrics. This means that metrics with

higher scores cover the same quality criteria captured by P@k or

S-Recall@k , but these two metrics do not capture other criteria

captured by the rest of metrics.

Our second observation is that ametric with a shallow cutoff (e.g.,

ERR@50) – i.e., it takes into account a few documents in the ranking

– has lower MU score than its deep counterpart (e.g., ERR@1000).

This behavior is consistent for every metric and variants. Likewise,

higher values for the patience parameter p in RBP obtains higher

MU scores. Intuitively, the shallower the metric is, the less probable

is to capture improvements in deep ranking positions.

RBU obtains the highest scores, when p = 0.99 (i.e., the metric

considers deep positions in the ranking) and all the tested values

for the effort component e .

6.3 Experiment 2: Simulating Alternative
Scenarios

In order to study the behavior of metrics under different situations

and to corroborate our findings, we repeat the experiment described

before after artificially modifying some parameters of the official

TREC Web Track experimental setup.

The second column in Table 2 shows the results when:

(1) Enforcing all relevance judgments to be graded: we replace

each discrete relevance value r by a random value between

zero and r : r ′(d ) = rand(0..r (d )). This is related to theMRed

constraint.

(2) Randomly assigning a certain weight to each aspect t in such

a way that the sum of the weights for each topic (or query)

adds up to 1:w (t ) = rand(0..1) and
∑
t ∈T w ′(t ) = 1. This is

related to the AspRel constraint.

(3) The ranking of documents returned by each system is manip-

ulated by reducing randomly its length: |d⃗ | = rand(0, . . . , |d⃗ |).
This variation simulates the situation inwhich systems should

cut their output rankings according to their confidence of

retrieving (or not) more relevant documents. This tuning is

related to the Conf constraint, which is only satisfied by EU

and the proposed metric.

As a result, the difference in terms of MU scores between RBU

and the other metrics is larger in this simulated scenario. The exper-

iment suggests that this effect is not due to the fact of satisfying any

single constraint, but satisfying several constraints simultaneously.

Although EU satisfies Conf and ERR-IA@k satisfiesMRed and Sat,

RBU outperforms both metrics in terms of MU.

In all the previous experiments, we have seen that MU rewards

the fact of considering deeper positions in the ranking. In order

to isolate this variable, the next simulation (Table 2, third column)

reduces the length of rankings substantially, by defining a random

cutoff between 0 and 50: |d⃗ | = rand(0..50). Consequently, metrics

that use a cutoff equal or greater than k = 50 will not be rewarded

by MU. Remarkably, all the RBU variants with an effort parameter

e higher than zero obtain the highest MU scores – RBU with e = 0

(omitted in the table) achieves a 0.7709 MU score.

This suggests that the effort component e plays an important

role when evaluating rankings with different lengths.

6.4 Experiment 3: Considering Metrics and
Default Parameters used in Official
Evaluation

MU scores depend on the set of metrics in consideration. Therefore,

the results could be biased by the selectedmetric setM and variants.

In order to avoid this bias, we consider the official metrics and

parameters used by the TRECWeb Track organizers. In addition, to

avoid the effect of implementation variations or bugs, we compare

RBU (implemented by ourselves) against the official evaluation

scores released by TREC (first column in Table 3).

In this case, AP-IA gets the highest MU score. In terms of RBU,

we can see that p values and MU scores are correlated. This shows

again than MU is biased by the the amount of documents in the

ranking that are visible to the metric. Note that most of metrics

proposed by the organizers use a cutoff no greater than k = 20.

That is, most of metrics receive less information than AP-IA or

NRBP, which take into account all the documents in the ranking.

In order to avoid this effect, we focus on metrics that apply the

the cutoff k = 20, and we apply the same cutoff to RBU: RBU@20
10

Maintaining the amount of documents visible to metrics constant,

RBU achieves the same MU score (0.9556) for all the tested variants,

obtaining the highest MU score among the metrics. This suggests

that the RBU performance in terms of MU is not due to differences

in the length of the observed ranking.

The high MU scores of RBU could be possibly due to the fact

of having an explicit component for the user effort (e parameter),

rather than the ability to capture other quality aspects such as diver-

sity and redundancy. In order to isolate this variable, we consider

only three RBU variants with zero value in the effort parameter

(e = 0,p = {0.8,0.9,0.99}). Results at the bottom of second column

in Table 3 show that RBU also outperforms the rest of metrics when

e = 0.

6.5 Experiment 4: Validation using TREC
Dynamic Domain Track

In order to check the robustness of our empirical conclusions, we

repeat the same experiment over TREC Dynamic Domain 2015 [28],

which includes 23 official runs. This track consists of an interactive

10
In this experiment we use the official evaluation scores. Therefore, we cannot adapt

AP-IA nor NRBP to this cutoff.



Table 3: MU scores over official metrics in TREC Web Track 2014 and TREC Dynamic Domain Track 2015.

TREC Web Track 2014 (Official Metrics) TREC Dynamic Domain 2015 (Official Metrics)

Official k = 20 Official

AP-IA 0.9771 RBUe=∗,p=∗ 0.9556 RBUe={0.001,0.05,0.1,0.5},p=0.99 0.8488

RBUe={0,0.001,0.05,0.1,0.5},p=0.99 0.9770..0.9766 { α-nDCG, α-nDCG }@20 0.9427 RBUe=0.001,p=0.9 0.8453

RBUe={0,0.001,0.05,0.1,0.5},p=0.9 0.9763..0.9760 { ERR-IA, nERR-IA }@20 0.9425 RBUe={0.05,0.1},p=0.9 0.8441

RBUe={0,0.001,0.05,0.1,0.5},p=0.8 0.9760..0.9750 P-IA@20 0.9080 RBUe=0.5,p=0.9 0.8440

{ α-DCG, α-nDCG }@20 0.9540 S-Recall@20 0.4141 RBUe=0.001,p=0.8 0.8406

ERR-IA@20, nERR-IA@20 0.9539 RBUe={0.05,0.1,0.5},p=0.8 0.8396

NRBP, nNRBP 0.9509 ACT@10 0.6276

{ ERR-IA, nERR-IA, α-DCG, α-nDCG }@10 0.9373 ERR (Arith. Mean) 0.5955

P-IA@20 0.9310 k = 20, e = 0 CT@10 0.5938

P-IA@10 0.9071 RBUe=0,p={0.8,0.9,0.99} 0.9556 RBUe=0,p={0.8,0.9,0.99} 0.5937

{ α-DCG, α-nDCG }@5 0.9001 { α-DCG, α-nDCG }@20 0.9428 ERR (Harm. Mean) 0.5912

{ ERR-IA, nERR-IA }@5 0.8999 { ERR-IA, nERR-IA }@20 0.9425 P@Recall 0.1162

P-IA@5 0.8720 P-IA@20 0.9081 P@Recall (modified) 0.1044

S-Recall@5 0.5573 S-Recall@20 0.4146 RR@10 0.1031

S-Recall@10 0.5001

S-Recall@20 0.4515

search scenario. Systems receive aspect-level feedback iteratively

and need to dynamically retrieve as many relevant documents for

aspects as possible, using as few iterations as possible. An impor-

tant particularity of this task is that the system must predict the

optimal ranking cutoff which is closely related with the Conf con-

straint. The official metrics used in this track are Cube Test (CT@k)
and Averaged Cube Test (ACT@k) [14], which are included in our

experiments.

The rightmost column in Table 3 shows that we obtain similar

results: all the RBU variants are at the top of the metrics ranking.

In this case, the user effort parameter e is important, given that it is

necessary to outperform other metrics such as CT@k or ACT@k .
In addition, we achieved again the same result when considering

only one RBU variant, appearing at the top in terms of MU scores.

7 CONCLUSIONS
We defined an axiomatic framework to analyze diversity metrics

and found that none of the existing metrics satisfy all the con-

straints. Inspired by this analysis, we proposed Rank-Biased Utility

(RBU, Equation 11), which satisfies all the formal constraints. Our

experiments over standard diversity evaluation campaigns show

that the proposed metric has more unanimity than the official met-

rics used in the campaigns, i.e., RBU captures more quality criteria

than the ones captured by other metrics. We believe our contribu-

tions would help researchers and analysts to define their evaluation

framework (e.g., which evaluation metric should be used?) in order

to analyze the effectiveness of systems in the context of scenarios

involving search result diversification. Future work includes a fur-

ther parameter sensitivity analysis of metrics, as well as the study

of other meta-evaluation criteria such as sensitivity or robustness

against noise.
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APPENDIX: FORMAL PROOFS
Proof. Rank-Biased Utility (RBU, Eq. 11) satisfies the constraints:

Pri (Eq. 1), Deep (Eq. 2), DeepTh (Eq. 3) and CloseTh (Eq. 4). RBU

is defined as:

RBU@k(d⃗ ) =
k∑
i=1

pi *.
,

∑
t∈T

*.
,
w (t )r (di )

i−1∏
j=1

(1 − r (dj , t ))
+/
-
− e+/

-
In the context of these constraints, it is assumed that there is only a single

aspect t for a given query or topic. Therefore, RBU can be expressed as:

RBU@k(d⃗ ) =
k∑
i=1

pi *.
,

*.
,
r (di )

i−1∏
j=1

(1 − r (dj , t ))
+/
-
− e+/

-
In addition, the condition relevance contribution is assumed, i.e., the rele-

vance of single documents does not completely cover the user information

needs r (d ) ≪ 1. Therefore, we can assume that

i−1∏
j=1

(1 − r (dj , t )) ≃
i−1∏
j=1

1 = 1

Finally, the four constraints compare rankings with the same length. This

means that we can eliminate the user cost component e , which is e
∑k
i=1 p

i

for every ranking in comparison. Under all these assumptions, RBU is

equivalent to the traditional RBP metric [16]:

RBU@k(d⃗ ) ∝
k∑
i=1

pi r (di ) = RBP@k(d⃗ )

According to the study by Amigó et al. [3], RBP satisfies the four constraints

enumerated above.

Proof. RBU satisfies the Conf constraint (Eq. 5).

RBU can be expressed as:

RBU@k(d⃗ ) =
k∑
i=1

pi
∑
t∈T

*.
,
w (t )r (di )

i−1∏
j=1

(1 − r (dj , t ))
+/
-
− e

k∑
i=1

pi

then

RBU@k
(
d⃗
)
> RBU@k

(
d⃗, d¬r el

)
⇔

RBU@k(d⃗ ) > RBU@k(d⃗ ) − pn+1e ⇔ 0 > −pn+1e

Proof. RBU satisfies the AspDiv constraint (Eq. 6). Under the

constraint conditions: RBU

(
d⃗di↔d′i

)
> RBU

(
d⃗
)
is equivalent to:

pi
∑
t∈T

*.
,
w (t )r (d′i , t )

i−1∏
j=1

(1 − r (dj , t ))
+/
-
> pi

∑
t∈T

*.
,
w (t )r (di , t )

i−1∏
j=1

(i − r (dj , t ))
+/
-
⇔

∑
t∈T

(
w (t )r (d′i , t )

)
>
∑
t∈T

(w (t )r (di , t )) ⇐
∑
t∈T

(
r (d′i , t )

)
>
∑
t∈T

(r (di , t )) ⇐

∀t ∈ T . r (d′i , t ) > r (di , t )

Proof. RBU satisfies the Red constraint (Eq. 7). Under the constraint

conditions:

RBU

(
d⃗, d′

)
> RBU

(
d⃗, d
)
⇔

w (t ′)r (d′, t ′)
|d⃗ |∏
j=1

(1 − r (dj , t ′)) > w (t )r (d, t )
|d⃗ |∏
j=1

(1 − r (dj , t )) ⇔

|d⃗ |∏
j=1

(1 − r (dj , t )) >
|d⃗ |∏
j=1

(1 − r (dj , t )) ⇔

(1 − rc )
���
{
di ∈d⃗ |r (di ,t

′)=rc
}��� > (1 − rc )

���
{
d∈d⃗ |r (d,t )=rc

}��� ⇔
���
{
di ∈ d⃗ |r (di , t ) = rc

}��� >
���
{
d ∈ d⃗ |r (d, t ′) = rc

}���

Proof. RBU satisfies the MRed constraint (Eq. 8). Under the con-

straint conditions:

RBU

(
d⃗, d′

)
> RBU

(
d⃗, d
)
⇔

w (t ′)r (d′, t ′)
|d⃗ |∏
j=1

(1 − r (dj , t ′)) > w (t )r (d, t )
|d⃗ |∏
j=1

(1 − r (dj , t )) ⇔

|d⃗ |∏
j=1

(1 − r (dj , t )) >
|d⃗ |∏
j=1

(1 − r (dj , t )) ⇐ ∀di ∈ d⃗ . r (di , t ) > r (di , t ′)

Proof. RBU satisfies the Sat constraint (Eq. 9). There exists a rele-

vance value r (dn, t ) = rmax = 1 large enough such that:

RBU

(
d⃗, dn+1

)
=

n∑
i=1

pi
∑
t ′∈T

*.
,
w (t ′)r (di )

i−1∏
j=1

(1 − r (dj , t ′))
+/
-
− e

n∑
i=1

pi+

∑
t ′∈T

*.
,
w (t ′)r (dn+1 ) (1 − r (dn , t ′))

n−1∏
j=1

(1 − r (dj , t ′))
+/
-
− epn+1

Given that ∀t ′ , t . r (dn+1, t ′) = 0, it is equivalent to:

RBU

(
d⃗, dn+1

)
=

n∑
i=1

pi
∑
t ′∈T

*.
,
w (t ′)r (di )

i−1∏
j=1

(1 − r (dj , t ′))
+/
-
− e

n∑
i=1

pi+

*.
,
w (t )r (dn+1 ) (1 − r (dn , t ′))

n−1∏
j=1

(1 − r (dj , t ))
+/
-
− epn+1

Given that 1 − r (dn, t ′) = 0, we obtain:

RBU

(
d⃗, dn+1

)
=

n∑
i=1

pi
∑
t ′∈T

*.
,
w (t ′)r (di )

i−1∏
j=1

(1 − r (dj , t ′))
+/
-
− e

n∑
i=1

pi + 0 = RBU

(
d⃗
)

Proof. RBU satisfies the AspRel constraint (Eq. 10).

Under the constraint conditions:

RBU

(
d⃗di↔d′i

)
> RBU

(
d⃗
)
⇔

w (t ′)r (d′, t ′)
i−1∏
j=1

(1 − r (dj , t ′)) > w (t )r (d, t )
i−1∏
j=1

(1 − r (dj , t )) ⇔

w (t ′)r (d′, t ′)
i−1∏
j=1

1 > w (t )r (d, t )
i−1∏
j=1

1⇔ w (t ′) > w (t )
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