A Formal Account of Effectiveness Evaluation and Ranking Fusion

Enrique Amigó
UNED NLP & IR Group
Madrid, Spain
enrique@lsi.uned.es

Fernando Giner
UNED NLP & IR Group
Madrid, Spain
fginer3@alumno.uned.es

Stefano Mizzaro
University of Udine
Udine, Italy
mizzaro@uniud.it

Damiano Spina
RMIT University
Melbourne, Australia
damiano.spina@rmit.edu.au

ABSTRACT
This paper proposes a theoretical framework which models the information provided by retrieval systems in terms of Information Theory. The proposed framework allows to formalize: (i) system effectiveness as an information-theoretic similarity between system outputs and human assessments, and (ii) ranking fusion as an information quantity measure. As a result, the proposed effectiveness metric improves popular metrics in terms of formal constraints. In addition, our empirical experiments suggest that it captures quality aspects from traditional metrics, while the reverse is not true. Our work also advances the understanding of theoretical foundations of the empirically known phenomenon of effectiveness increase when combining retrieval system outputs in an unsupervised manner.

CCS CONCEPTS
• Information systems → Information retrieval;

KEYWORDS
information theory; evaluation; ranking fusion

ACM Reference Format:

1 INTRODUCTION
Most of the research in the field of Information Retrieval (IR) is empirically-based. The effectiveness of retrieval approaches are typically validated over large data sets, most of them developed in the last decade. The effectiveness of ranking fusion and learning-to-rank algorithms are also validated in an empirical way. In addition, effectiveness metrics are supported by empirical user behavior studies or meta-metrics such as robustness or sensitivity [3, 17].

On the other hand, some works aim to provide explanations for some phenomena observed in empirical experiments. For instance, the Probability Ranking Principle [34] assumes that retrieval systems return documents ranked in order of decreasing probability of relevance to the user. In the same way, based on empirical user behavior observations, evaluation metrics are supported by the top-heaviness principle [9], which gives more weight to highly-ranked documents in the evaluation process. Studies in unsupervised ranking fusion algorithms have reported empirically that the most effective combinations of rankings are those in which the relevant documents are unanimously early-ranked, while the retrieved non-relevant documents vary across rankings [24, 35]. Likewise, other studies have reported empirically that human assessments can be replaced successfully—at least to some extent—by the average of system outputs in an evaluation campaign [6, 33].

In this paper, we aim to define a theoretical framework which models the phenomena described above. The framework is based on the notion of Observational Information Quantity: Rather than focusing on document content, this framework models the information provided by retrieval systems (document rankings) and human assessors in terms of Information Theory [31]. On the basis of observational information quantity we then define an entropy-like notion that allows the formalization of system effectiveness as an information-theoretic similarity between system outputs and human assessments. The proposed framework also models ranking fusion as an information quantity measure.

The resulting effectiveness metric improves most of existing metrics in terms of formal constraints. In other words, the proposed framework gives a basis—grounded in Information Theory—for effectiveness metrics, which were traditionally supported by user behavior modeling. Additionally, our experiments corroborate this analysis, showing that the proposed metric captures quality aspects from traditional metrics, while the reverse is not true.

On the other hand, our work provides a theoretical foundations of the empirically-known phenomenon of effectiveness increase when combining retrieval system outputs in an unsupervised manner. Our experiments also check empirically the assumptions in which the proposed theoretical framework is grounded.

Let us remark that this work does not attempt to provide better solutions than those presented in previous work; rather we aim at...
defining a global theoretical framework on which to base future improvements.

The rest of the paper is organized as follows. Section 2 discusses related work and Section 3 introduces the theoretical framework based on Observational Information Quantity. Section 4 analyzes how our proposed framework can be used to inform an effectiveness evaluation metric that satisfies a set of formal constraints. Section 5 describes the justification of ranking fusion based on Observational Information Quantity. Section 6 connects the definitions of our framework with those of the classical Information Theory by Shannon. Finally, Section 7 concludes the work.

2 RELATED WORK

2.1 Measuring Effectiveness

Most of current metrics estimate effectiveness by assuming an underlying user model for browsing relevant and non-relevant documents returned in the system output ranking. For instance, Discount Cumulative Gain [20] assumes that the probability of exploring deeper ranking positions decreases in a logarithmic manner. Expected Reciprocal Rank (ERR) [10] assumes a cascade model in which the user is looking for a particular document. Rank-Biased Precision (RBP) [27] assumes that a fixed probability of exploring the next document in the ranking. According to the analysis by Amigó et al. [3] none of the most popular metrics satisfies completely a set of five formal constraints. RBP satisfies four of them but not the confidence constraint, which penalizes the addition of non-relevant documents at the end of the ranking.

Some authors have focused on explaining evaluation metrics in terms of Measurement Theory, tackling the issue of the suitability of the interval scale assumption [16] or interpreting metrics as an homomorphism (measurement) between effectiveness and terms of Measurement Theory, tackling the issue of the suitability of the interval scale assumption [16] or interpreting metrics as an homomorphism (measurement) between effectiveness and systems [15]. These works state formal constraints and desirable properties, but they do not derive any particular approach.

In this paper, we apply an information theory-based similarity measure to compare system outputs against the gold-standard. Our theoretical analysis shows that user behavior based constraints can be satisfied by grounding the metric in information theory principles.

2.2 Ranking Fusion

Finding a theoretical explanation for the effectiveness of combining system outputs in an unsupervised manner has been largely explored in the literature. This problem has been modeled from two closely-related perspectives: classifier ensembles and ranking fusion.

From the first perspective, the literature shows that combining classifiers is effective when the individual classifiers are accurate and diverse. Hansen and Salamon [18] proved that if the average error rate for an example is less than 50% and the component classifiers in the ensemble are independent in the production of their errors, the expected error for that example can be reduced to zero as the number of classifiers combined goes to infinity. This theoretical analysis was actually reported by the Condorcet’s jury theorem in 1785 [7, 12]. However, such assumptions rarely hold in practice. Krogh and Vedelsby [22] later formally showed that an ideal ensemble consists of highly correct classifiers that disagree as much as possible. In general, a point of consensus is that when the classifiers make statistically independent errors, the combination has the potential to increase the performance of the system. Other studies assume correlation between signals, but equal performance and homogeneous correlation [21], which is also non-realistic in the context of information systems. Matan [26] analyzed the upper and lower bounds of classification of a majority based ensemble. In the particular context of information retrieval tasks, Shaw et al. [32] found that the best combination strategy consisted of summing the outputs of the retrieval algorithms, and Hull et al. [19] found that the best improvement in performance in the context of a filtering task came from the simple averaging strategy.

From the ranking fusion perspective, Montague and Aslam [28] reported an important improvement of unsupervised combined systems w.r.t. the best single system in multiple TREC test beds. In addition, just like in the classification scenario, the need for avoiding redundant systems has been reported in the context of ranking fusion. For instance, Nuray-Turan and Can [29] reported effectiveness improvement when selecting rankings that differ from the majority voting in the ranking fusion process. Lee [24] and later Vogt and Cottrell [35] found that the best combinations were between systems that retrieve similar sets of relevant documents and dissimilar sets of non-relevant documents. There exist other works that reformulate ranking fusion algorithms in terms of probability estimations, always under the independence assumption [5, 8, 25]. Finally, Amigó et al. [1] proposed an extension of the notion of Information Quantity in order to generalize different ranking fusion methods in the context of text similarity. In this paper, we review this notion extending it to observational entropy.

3 OBSERVATIONAL INFORMATION QUANTITY

3.1 An Example

Let us start with a simple example that considers the output of a set of information retrieval systems as in Table 1. Table 1: Example of system outputs and human assessments.

<table>
<thead>
<tr>
<th>Rank</th>
<th>r_1</th>
<th>r_2</th>
<th>r_3</th>
<th>Human assessments g</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$r_1(d_1)$</td>
<td>$r_2(d_1)$</td>
<td>$r_3(d_1)$</td>
<td>$g(d_1) = g(d_1) = 1$</td>
</tr>
<tr>
<td>2</td>
<td>$r_1(d_2)$</td>
<td>$r_2(d_1)$</td>
<td>$r_3(d_1)$</td>
<td>$g(d_1) = 0$</td>
</tr>
<tr>
<td>3</td>
<td>$r_1(d_3)$</td>
<td>$r_2(d_2)$</td>
<td>$r_3(d_1)$</td>
<td>$g(d_1) = 0$</td>
</tr>
<tr>
<td>n/a</td>
<td>$d_{1,2,3}$</td>
<td>$d_{1,2,3}$</td>
<td>$d_{1,2,3}$</td>
<td>$g(d_{1,2,3}) = 0$</td>
</tr>
</tbody>
</table>

Table 1: Example of system outputs and human assessments.
First, the more a document is highly ranked according to a retrieval system, or relevance scored according to human assessors, the more the document is discriminated against the large collection (increasing informativeness). For instance, according to \(r_1 \) in the example, we have more information about the relevance of \(d_1 \) than \(d_2 \).

Second, the earlier documents are ranked according to different systems, the more information about their relevance we observe. This is in line with the conclusions found in previous work [24, 35]: the most effective combinations of rankings are those in which the relevant documents are unanimously early ranked, while the retrieved non-relevant documents vary across rankings. For instance, \(d_1 \) occurs at the first or second position in every ranking. Therefore, we have more information to estimate the relevance of \(d_1 \) than other documents.

Third, redundant systems provide less information than non-redundant systems. In relation to this, the profits of combining non-redundant systems, the more information about their relevance we observe. For instance, we have more information about the relevance of \(d_1 \) and \(d_2 \) by itself and also by \(d_3 \), which consists of the three documents. Likewise, \(d_1 \) is ranked in the first position by \(r_2 \) and \(r_3 \), but both rankings seems to be similar, that is, they seem to be providing the same information.

\[d' \geq \Gamma d \iff \forall \gamma \in \Gamma. \gamma(d') \geq \gamma(d). \]

In the following we will use both \(\leq \Gamma \) and \(\geq \Gamma \), with the obvious meaning. Going back to the example in Table 1, we obtain the following outscoring relationships regarding to \(d_1 \) and \(d_2 \). Being \(\Gamma = \{r_1, r_2, r_3, g\} \) (note that we also take into account the human assessments in the ground truth):

\[
\begin{align*}
 &d_1 \geq \Gamma d_1, \quad d_1, d_2 \geq \Gamma d_2, \\
 &\Gamma d_3 \geq d_1, \quad d_3, d_4 \geq \Gamma d_3.
\end{align*}
\]

Documents \(d_1 \) and \(d_2 \) are only outscored by themselves, i.e., there is no other documents that is unanimously ranked earlier in \(\Gamma \). \(d_2 \) is outscored by \(d_2 \) and \(d_1 \) (including \(d_3 \)). Likewise, \(d_4 \) is outscored by itself and also by \(d_1 \), given that it is corroborated by the three rankings and the gold \(g \).

Then, the observational information quantity of a document is defined as follows.

Definition 3.1. A document, \(d \), is unanimously outscored by another document, \(d' \), according to a set of signals, \(\Gamma \), whenever it is outscored for every signal simultaneously:

\[d' \geq \Gamma d \iff \forall \gamma \in \Gamma. \gamma(d') \geq \gamma(d). \]

In other words, the more a document is unanimously outscored simultaneously in all signals by other documents, the less the document is informative. In consequence, highly informative documents are those that are highly scored by all rankings and the human assessment.

For instance, going back to the example in Table 1 and taking into account inequalities in Eq. (1), the Observational Information Quantity of document documents is:

\[
\begin{align*}
 &I_\Gamma(d_1) = -\log \left(\frac{1}{|D|} \right), \\
 &I_\Gamma(d_2) = -\log \left(\frac{2}{|D|} \right), \\
 &I_\Gamma(d_3) = -\log \left(\frac{1}{|D|} \right), \\
 &I_\Gamma(d_4) = -\log \left(\frac{2}{|D|} \right).
\end{align*}
\]

Documents that obtain the lowest score by all signals (i.e., documents that are both non-retrieved and non-relevant) obtain the lowest Observational Information Quantity, as they are outscored by \(d_1, d_2, d_3, d_4 \) and by themselves:

\[\forall i \in \{5, 6, \ldots \}. I_\Gamma(d_i) = -\log \left(\frac{|D|}{|D|} \right) = 0. \]

Our formalization of observational information quantity matches with the definition provided with Amigó et al. [1] for similarity measures fusion. Here, we extend it to define an entropy-like notion.

Definition 3.3. The Observational Entropy, \(H(\Gamma) \), of a set of signals, \(\Gamma \), is the expected observational information quantity across the document set, \(D \):

\[H(\Gamma) = \frac{\sum_{d \in D} I_\Gamma(d)}{|D|}. \]

Intuitively, the observational entropy of a set of signals represents the extent to which finding unanimous improvement is unlikely. Thus, non-correlated signals will tend to achieve a higher entropy. Also note that this definition is inspired by the classical Shannon’s Entropy, but it differs from the original because it uses two different probability distributions: the probability distribution of outscoring (the one used in Equation (2)) and the probability distributions of a document \(\frac{1}{|D|} \). Section 6 explains the connection between traditional and observational information quantity. For the sake of simplicity, we will denote hereafter the entropy for a single signal set as \(H(y) \).

\[d \geq \Gamma d \iff I_\Gamma(d) = I_\Gamma(d) \geq I_\Gamma(d). \]

3.3 Properties

Observational Information Quantity and Observational Entropy satisfy the following general properties, that will be useful in the following.

Property 3.1. For all \(\gamma \in \Gamma \), \(I_\Gamma(d) \) is monotonic w.r.t. signal values \(\gamma(d) \):

\[d \geq \Gamma d \Rightarrow I_\Gamma(d) \geq I_\Gamma(d). \]

Property 3.1 implies the following corollary.

Corollary 3.2. The observational information quantity of a document under a single signal grows with its signal value:

\[I_{\gamma(y)}(d) \propto \gamma(d). \]

\footnote{We will use \(\gamma \in \Gamma \) to refer to signals in a general manner.}

\footnote{We assume that earlier rank positions correspond with higher scores.}

\footnote{Note that the probabilities are computed as frequencies.}

\footnote{See formal proofs in Appendix A.}
We now show how the above definitions and properties can be exploited to define an effectiveness measure that satisfies formal constraints. Amigó et al. [3] defined a theoretical framework according to five formal constraints: swapping contiguous documents in concordance with the gold increases effectiveness (priority constraint, Pr 1); the effect of swapping is larger at the top of the ranking (deepness constraint, Deep); retrieving one relevant document is better than a huge amount of relevant documents after a huge set of irrelevant documents (deepness threshold constraint, DeepTh); there exists a certain area at the top of the ranking in which n relevant documents is better than only one (closeness threshold constraints, CloseTh); and finally, adding irrelevant documents at the bottom of the ranking decreases effectiveness (confidence constraint, Conf). According to this study, among the most popular metrics, only the Rank-Biased Precision (RBP) metric [27] satisfies the first four constraints. The following theorem states that OIE satisfies these five constraints.

Theorem 4.2. Information Evaluation Theorem OIE satisfies the five constraints defined by Amigó et al. [3] whenever $1 < \beta < \frac{2n-1}{n}$, being n the minimum amount of documents that are necessarily explored by the user.\(^5\)

Surprisingly, these theoretical boundaries for β correspond with those predicted by Amigó et al. [2] for the ICM similarity model, even though ICM is grounded on a different axiomatics, oriented to the general notion of similarity.

4.3 Experiment

Although this work is mainly theoretical, we performed a brief experiment comparing OIE against traditional metrics. Here, we use the meta-metric Metric Unanimity (MU) [4]. MU quantifies to what extent a metric is sensitive to quality aspects captured by other existing metrics. The intuition is that, if a system improves another system for every quality criteria, this should be reflected by every metric. A metric that captures every quality criteria should reflect these improvements.

OIE is formalized as the Point-wise Mutual Information (PMI) between metric decisions and improvements corroborated by all the metrics in a given set of metrics, M. Formally, given a metric, $M \in M$, we define the Point-wise Mutual Information (PMI) between metric decisions and improvements as follows:

\[
\operatorname{PMI}(M, \text{Improv}) = \sum_{d \in D} \sum_{g \in G} f(d, g) \log \frac{f(d, g)}{f(d) f(g)}
\]

where $f(d, g)$ is the joint frequency of decision d and improvement g, and $f(d)$ and $f(g)$ are the marginal frequencies of decision d and improvement g, respectively.

\(^5n\) is a variable defined for the closeness deepness threshold constraint [3].
Table 2: Traditional metrics and Observational Information Effectiveness (OIE), ranked by Metric Unanimity (MU) \[4\].

<table>
<thead>
<tr>
<th>Metric</th>
<th>MU</th>
<th>Pri</th>
<th>Deep</th>
<th>DeepTh</th>
<th>CloseTh</th>
<th>Conf</th>
</tr>
</thead>
<tbody>
<tr>
<td>OIE$\beta=1,2$</td>
<td>0.928</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>OIE$\beta=1$</td>
<td>0.927</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>RBP</td>
<td>0.926</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>○</td>
</tr>
<tr>
<td>DCG</td>
<td>0.914</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>○</td>
</tr>
<tr>
<td>AP</td>
<td>0.910</td>
<td>●</td>
<td>●</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>P@100</td>
<td>0.910</td>
<td>○</td>
<td>○</td>
<td>●</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>DCG@50</td>
<td>0.905</td>
<td>○</td>
<td>○</td>
<td>●</td>
<td>●</td>
<td>○</td>
</tr>
<tr>
<td>ERR@50</td>
<td>0.903</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>RR</td>
<td>0.901</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>○</td>
</tr>
<tr>
<td>P@50</td>
<td>0.900</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>ERR@20</td>
<td>0.886</td>
<td>○</td>
<td>○</td>
<td>●</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>DCG@20</td>
<td>0.886</td>
<td>○</td>
<td>○</td>
<td>●</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>P@20</td>
<td>0.876</td>
<td>○</td>
<td>○</td>
<td>●</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>P@10</td>
<td>0.829</td>
<td>○</td>
<td>○</td>
<td>●</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>RR@10</td>
<td>0.162</td>
<td>○</td>
<td>○</td>
<td>●</td>
<td>○</td>
<td>○</td>
</tr>
</tbody>
</table>

$m \in M$, and a set of system outputs, \mathcal{R}^6:

$$MU_{M, R}(m) = \text{PMI}(\Delta m_{i,j}, \Delta M_{i,j}) = \log \left(\frac{P(\Delta m_{i,j}, \Delta M_{i,j})}{P(\Delta m_{i,j}) P(\Delta M_{i,j})} \right).$$

In the equation, $\Delta m_{i,j}$ and $\Delta M_{i,j}$ are statistical variables over system pairs $(r_i, r_j) \in \mathcal{R}^2$, indicating a system improvement according to the metric and to every metric, respectively:

$$\Delta m_{i,j} \equiv m(r_i) > m(r_j)$$

$$\Delta M_{i,j} \equiv \forall m \in M \left(m(r_i) \geq m(r_j) \right).$$

Note that MU is closely related with the unanimity notion in observational information quantity. The reader could thing that there exists some theoretical over-fitting here. However, MU and observational information quantity ($I_T(d)$) measure different things. $MU_{M, R}(m)$ measures the correspondence between a metric and the whole set of metrics (system rankings), while $I_T(d)$ combines system outputs (document rankings).

In all our experiments, we used the Gov-2 collection and the topics 701 to 750 used in the TREC 2004 Terabyte Track [11]. We also used the 60 official runs submitted by the participants to the track. Table 2 shows the MU results for OIE with $\beta = 1.2$ (an arbitrarily selected value in the theoretical grounded range), and other standard evaluation metrics including: OIE with $\beta = 1$ (out of the theoretically grounded range), Precision at cutoff k (P@k), Average Precision (AP), Reciprocal Rank (RR) [36], Expected Reciprocal Rank (ERR@k) [10], Discounted Cumulative Gain (DCG@k) [20] and Rank-Biased Precision (RBP) [27]. For OIE, we have considered the cutoff point at position 100. For the rest of metrics, we have considered the cutoff positions 20, 50 and 100. For the RBP metric, we have considered the values 0.8, 0.9 and 0.99 for the parameter p.

As the table shows, metrics with shallow cutoffs (20 or 50) and RR, which stops at the first relevant document, are at the bottom of the MU ranking, given that they capture only partial aspects of the ranking quality. On the other hand, OIE$\beta=1$ improves the rest of metrics in terms of MU. The improvement of OIE$\beta=1$ regarding OIE$\beta=1$ corroborates the theoretical analysis about the β ranges.

Interestingly, RBP (the third ranked metric) is the only one that satisfies the four first constraints according to the study by Amigó et al. [3]. Note that we obtained the same Unanimity for RBP regardless the p parameter ($p \in \{0.8, 0.9, 0.99\}$). The improvement in MU for OIE compared against RBP is probably due to the Confidence constraint. Some rankings have less than 100 documents. The benefit of avoiding non-relevant documents at the end of the ranking is only rewarded by OIE in this metric set. Note also that some metrics such as DCG satisfy the Deepness Threshold constraint when adding a ranking cutoff, but this is at the cost of Priority and Deepness, given that documents at deep positions are not considered.

This experiment can be extended for more metrics, meta-evaluation criteria, and data sets. In this paper we focus on the Observational Information Quantity as a theoretical framework that can be applied to different phenomena in IR. Our formal analysis shows that effectiveness can be grounded in the Observational Information framework.

5 UNSUPERVISED RANKING FUSION

We now turn to applying the framework to the problem of ranking fusion.

5.1 Information Quantity Cumulative Evidence

As we mentioned in the introduction, the experience in most of experiments reported in the IR literature corroborates the Probability Ranking Principle. For instance, precision/recall curves tend to be ranked in the same manner than $I_T(d)$ (Property 3.2), we can say that the probability of relevance increases with the Observational Information Quantity under a single signal. We generalize this phenomenon for multiple signals stating the following assumption.

Assumption 1. [Information Quantity Cumulative Evidence] Adding signals increases the probability of improving relevance under an Observational Information Quantity increase

$$P \left(d \geq g \left| d \geq I_{\gamma \cup \gamma'} d_0 \right. \right) \geq P \left(d \geq g d_0 \left| d \geq I_\gamma d_0 \right. \right).$$

Note that according to Property 3.2, the observational information quantity I_T under a single signal γ shortens documents in the same manner than γ. Therefore, we can directly infer from this theorem that an increase according to the I_T is more reliable than an increase of signals in isolation.

In order to check this assumption empirically, we make a pooling from the first 100 ranked document for each system output in our data set. Here, we consider that documents not present in a particular ranking γ are scored with the lowest signal value according to γ. In each experiment:

(i) we randomly select one topic and a set Γ of five system outputs;
The ranking fusion model proposed in this paper consists of the
I
items and an extremely costly computation process to accurately
estimate the probability of improvement for all measurements. In
addition, there exist some theoretical limitations for the granularity
in particular situations. For instance, two documents appearing
at the first position of two different rankings have necessarily the
same \(I_{\Gamma} \), which is \(\frac{1}{|D|} \).

Let us check the Ranking Mergeability theorem empirically. To
this aim, we emulate fine-grained single signals and \(I_{\Gamma} \) as follows.
We start by generating random samples of five signals \(\Gamma \), and one
single signal \(\gamma \) from \(\Gamma \). Then, we collect documents from the single
ranking \(\gamma \) progressively from the top to the bottom, but discarding
documents that achieve the same \(I_{\Gamma} \) than previously collected
documents. This will generate a set of documents \(D' \) such that:

\[
\forall d_1, d_2 \in D', I_{\Gamma}(d_1) \neq I_{\Gamma}(d_2) \land \exists \gamma \in \Gamma: \gamma(d_1) \neq \gamma(d_2).
\]

Finally, we compare the effectiveness of \(\gamma \) and \(I_{\Gamma} \) in terms of OIE
(using \(\beta = 1.2 \)) across all topics, without considering the rest of
documents.

Figure 2 compares the effectiveness of the single signal OIE(\(\gamma, g \))
(x-axis) against the effectiveness of the combined signals OIE(\(I_{\Gamma}, g \))
(y-axis). In our experiments, OIE(\(I_{\Gamma}, g \)) > OIE(\(\gamma, g \)) for 1,809 out of
2,000 cases.

As the theory predicts, \(I_{\Gamma} \) outperforms the single signal in almost
all the cases. Notice that the improvements are less prominent than
in the previous experiment. The first reason is that we are consider-
ing rankings instead of probabilities under non strict comparisons
between signal values. The second reason is that OIE captures top
heaviness, giving more weight to documents located at the top of
rankings.

(ii) we compute the observational information quantity \(I_{\Gamma}(d) \) for
each document under this set of measurements \(\Gamma \);
(iii) we select one single signal (one system output) \(\gamma \) from \(\Gamma \);
(iv) We compute the conditional probabilities \(P(d \geq_{\gamma} d' | d \geq \gamma(d')) \)
and \(P(d \geq_{\gamma} d' | d \geq_{\gamma} d') \). That is, the relevance increase, when
increasing the system score according to \(\gamma \) and when increasing
the observational information quantity \(I_{\gamma} \).

Each dot in Figure 1 represents one experiment, thus, one topic,
five signals and one single signal from this set. The horizontal
axis represents \(P(d \geq_{\gamma} d' | d \geq_{\gamma} d') \). The vertical axis represents
\(P(d \geq_{\gamma} d' | d \geq \gamma(d')) \). As the figure shows, the Information Effec-
tiveness Additivity proposition practically always holds.

5.2 Ranking Fusion by Observational
Information Quantity

The ranking fusion model proposed in this paper consists of the
combination of system outputs in a single signal according to the
observational information quantity of documents. That is \(I_{\text{Fusion}}(d) =
I_{\Gamma}(d) \). Then, we can state the following theorem.

Theorem 5.1. [Ranking Mergeability] Under the Information
Quantity Cumulative Evidence, and assuming that the information
quantity estimation is fine grained, the effectiveness of \(I_{\Gamma} \) for any
\(\beta \) values in the interval \((1, 2) \) is higher than the effectiveness of any
single measurement \(\gamma \in \Gamma \):

\[
OIE_{\beta \in (1, 2)}(I_{\Gamma} \cup \{\gamma\}, \gamma) \geq OIE_{\beta \in (1, 2)}(I_{\Gamma}, \gamma).
\]

This theorem has strong practical implications. For instance, it
means that instead of evaluating five systems, we can directly join
them to achieve the best result. However, the Effectiveness Addi-
tivity Theorem has an important limitation, which is the need for
high granularity in \(I_{\Gamma} \). That is, we need a huge amount of docu-
ments and an extremely costly computation process to accurately

\[
\begin{bmatrix}
\mathbb{P}(d \geq_{\gamma} d' | d \geq \gamma(d')) \\
\mathbb{P}(d \geq_{\gamma} d' | d \geq_{\gamma} d')
\end{bmatrix}, \gamma \in \Gamma.
\]

\[
\begin{bmatrix}
\mathbb{P}(d \geq_{\gamma} d' | d \geq_{\gamma} d') \\
\mathbb{P}(d \geq_{\gamma} d' | d \geq \gamma(d'))
\end{bmatrix}, \gamma \in \Gamma.
\]

\[
\begin{bmatrix}
\mathbb{P}(d \geq_{\gamma} d' | d \geq \gamma(d')) \\
\mathbb{P}(d \geq_{\gamma} d' | d \geq_{\gamma} d')
\end{bmatrix}, \gamma \in \Gamma.
\]
A common way of estimating joint probabilities under a limited observational information framework. Signals (retrieval system outputs) in IR are quantitative, while the traditional information theory measures the information quantity of events characterized by binary features. On the other hand, Differential Entropy considers a continuous space of signals, but it does not allow to estimate the information quantity of a single event in this continuous space.

We now describe our proposed derivation for the observational information framework. We start by representing object observations as fuzzy sets. This allows us to capture both the amount of signals and their quantitative projection into each object. Then, we use the Dempster-Shafer theory of evidence [14, 30]. In particular, we use the belief function over the fuzzy set operators in order to estimate the information quantity of observations. Note that the proposed model differs from other approaches based on Dempster-Shafer theory which focus on document content representation [13, 23].

A fuzzy set is formally defined as:

Definition 6.1. A fuzzy set is a pair \((A, f)\) where \(A\) is a set and \(f\) a membership function \(f : A \rightarrow [0, 1]\).

Then, an observation can be formalized as follows.

Definition 6.2. Given a set of signals, \(\Gamma = \{\gamma_1, \ldots, \gamma_n\}\), and a set of possible values generated by each signal, \(\{x_1, \ldots, x_n\}\), an observation, \(O_T(x_1, \ldots, x_n)\), under \(\Gamma\) is a fuzzy set of signals whose membership function corresponds to the signal values: \(A = \Gamma\) and \(f(\gamma_i) = x_i, \forall i \in \{1, \ldots, n\}\).

In other words, a document observation has two main components: the signals under which the document is observed and the corresponding signal values.

The purpose of Dempster-Shafer’s theory is to represent believe in a set of elements referred to as a frame of discernment. We can consider the believe function defined on the observations of documents, this is possible by taking into account the inclusion relationship between observations.

Then, applying the Dempster-Shafer evidence theory, we define the mass function or Basic Probability Assignment (BPA) as the probability of observations across the set of documents \(D\). Being \(\omega\) an observation:

\[
m(\omega) = P_{d \in D}(O_T(d) = \omega).
\]

Consequently, the corresponding belief function of an observation \(\omega'\) is:

\[
Bel(\omega') = \sum_{\omega | \omega \supseteq \omega'} m(\omega).
\]

And therefore, the belief of a document observation can be expressed as:

\[
Bel(O_T(d)) = \sum_{\omega | \omega \supseteq O_T(d)} P_{d \in D}(\omega = O_T(d')) = P_{d \in D}(O_T(d') \supseteq O_T(d)).
\]

The last identity is attained by considering that observations are actually a partition of the document space.
Then, the observational information quantity is analogous to the information quantity in Shannon’s theory but replacing the probability with the belief function:

\[I_\Gamma(d) = I(\Omega_T(d)) = -\log(\text{Bel}(\Omega_T(d))) = -\log(P_{d' \in D}(\Omega_T(d') \supseteq \Omega_T(d))) = -\log(P_{d' \in D}(d' \supseteq d)), \]

which leads directly to Definition 3.2.

The entropy of a set of signals is directly derived from the traditional notion. That is, the expected information quantity:

\[H(\Omega) = \sum_{x_1} \cdots \sum_{x_n} P(x_1, \ldots, x_n) I(\Omega(x_1, \ldots, x_n)) = \sum_{\omega \in \Omega} P_d(\omega \supseteq \Omega(d)) I_\Gamma(d) = \frac{1}{|D|} \sum_{d \in D} I_\Gamma(d), \]

which leads to Definition 3.3.

7 CONCLUSIONS

We have shown how – by starting from the Shannon-like definitions of Observational Information Quantity and Observational Entropy – we can provide a theoretically grounded explanation of phenomena that are well known results of empirical experiments. In this paper we have focused on effectiveness metrics and ranking fusion. Effectiveness can be modeled in terms of information theory – Observational Information Effectiveness (OIE), which is based on the similarity between system outputs and human assessments. OIE satisfies desirable properties that are not satisfied by traditional metrics. Moreover, our experimental results suggest that OIE captures aspects from different existing metrics. Regarding the ranking fusion problem, we have seen that, under certain assumptions, the observational information quantity outperforms single signals.

This current work has known limitations, given that the estimation of observational information quantity is not straightforward. In the near-future we plan to apply our general framework to explain other phenomena that are important in Information Retrieval, such as evaluation without relevance assessment and query performance prediction.

ACKNOWLEDGEMENTS

This research was partially supported by the Spanish Government (project Vemodalen TIN2015-71785-R) and the Australian Research Council (project LP150100242).

REFERENCES

A FORMAL PROOFS
Proof. [Property 3.1]
According to Definition 3.2, if $Y \in \Gamma(y(d_1))$ then:
\[
I_r(d_1) = -\log \left(P_{d \in D}(d' \geq r \mid d_1) \right) \geq -\log \left(P_{d' \in D}(d' \geq r \mid d_1) \right) = I_r(d_1)
\]
\[
I_r(d_1) = -\log \left(P_{d \in D}(d' \geq r \mid d_1) \right) \geq -\log \left(P_{d' \in D}(d' \geq r \mid d_1) \right) = I_r(d_1)
\]

d
\[
I_{\Gamma \cup Y}(d) = -\log \left(P_{d \in D}(d' \geq Y \mid d) \right) \geq -\log \left(P_{d' \in D}(d' \geq Y \mid d) \right) = I_{\Gamma \cup Y}(d)
\]
And therefore:
\[
H(\Gamma) = \sum_{d \in D} I_{\Gamma \cup Y}(d) \geq \sum_{d \in D} I_r(d) = H(\Gamma)
\]

Proof. [Property 3.3]
According to Definition 3.2:
\[
I_{\Gamma \cup Y}(d) = -\log \left(P_{d \in D}(d' \geq Y \mid d) \right) \geq -\log \left(P_{d' \in D}(d' \geq Y \mid d) \right) = I_{\Gamma \cup Y}(d)
\]
And therefore:
\[
H(\Gamma \cup Y) = \sum_{d \in D} I_{\Gamma \cup Y}(d) \geq \sum_{d \in D} I_r(d) = H(\Gamma)
\]

Proof. [Property 3.4]
\[
H(Y) = \sum_{d \in D} I_{\Gamma \cup Y}(d) = \sum_{d \in D} -\log \left(P_{d \in D}(d' \geq Y \mid d) \right) = 1 + n \sum_{i=1}^n \log \left(\frac{|D|}{i} \right)
\]

Proof. [Property 3.5]
Being f any strict monotonic function (i.e. does not affect the ordinal relationships)
\[
I_{\Gamma \cup Y}(d) = -\log \left(P_{d \in D}(d' \geq Y \mid d) \right) = -\log \left(P_{d' \in D}(d' \geq Y \mid d) \right) = I_{\Gamma \cup Y}(d)
\]
and therefore:
\[
H(\Gamma \cup Y) = H(\Gamma \cup f(Y))
\]

Proof. [Theorem 4.2 (Observational Information Evaluation Theorem)]
Let be D the collection of documents. For our purposes, we can ignore the $H(g)$ from OIE given that it affects equally to every compared outputs.

Regarding the priority and deepness constraints, when swapping two contiguous documents in the ranking in concordance with the gold (g(d1) = 0, g(d1+1) = 1):

OIE$(r_{d_1+d_1+1}) -$ OIE$(r) = H(r_{d_1+d_1+1}) - \beta H(r_{d_1+d_1+1}, g) \mid g = H(r) - \beta H(r, g) = -\beta H(r_{d_1+d_1+1}, g) + \beta H(r, g) = -H(r_{d_1+d_1+1}, g) + H(r, g))$

\[
\frac{\sum_{d \in D} I_{r,g}(d) - \sum_{d \in D} I_{r_{d_1+d_1+1},g}(d)}{\sum_{d \in D} I_{r_{d_1+d_1+1},g}(d)} = \frac{I_{r,g}(d_{i+1}) + I_{r,g}(d_{i+1}) - I_{r_{d_1+d_1+1},g}(d_{i+1}) - I_{r_{d_1+d_1+1},g}(d_{i+1})}{I_{r_{d_1+d_1+1},g}(d_{i+1})} = 1
\]

Given that both rankings the amount of relevant documents above the relevant document d_{i+1} is equal, and therefore:
\[
I_{r,g}(d_{i+1}) = I_{r_{d_1+d_1+1},g}(d_{i+1})
\]

Therefore, the previous expression is equivalent to:
\[
I_{r,g}(d_{i+1}) - I_{r_{d_1+d_1+1},g}(d_{i+1}) = -\log \left(P_{d \in D}(d_{i+1}, g) \right) \geq -\log \left(P_{d' \in D}(d_{i+1}, g) \right) = I_{r,g}(d_{i+1})
\]

Given that log$(\frac{i+1}{2})$ is positive and monotonic regarding i, both the priority and deepness constraints are satisfied.

Regarding the threshold constraints, being D_g the set of documents annotated as relevant in the gold standard. Let r_1 a ranking which retrieves only one relevant document, its OIE is:

\[
\text{OIE}(r_1, g) = H(r_1) = -\log \left(\frac{1}{|D_g|} \right) - \beta \log \left(\frac{|D_g|}{|D|} \right)
\]

On the other hand, let r_n a ranking which retrieves n relevant documents after n non relevant documents, then, $H(r_n)$ is $-\sum_{i=1}^{2n} \log \left(\frac{i}{n!} \right)$, and $H(r_n, g)$ is proportional to:

\[
\sum_{i=1}^{n} -\log \left(\frac{i}{n!} \right) + \sum_{i=n+1}^{2n} -\log \left(\frac{i-n}{n!} \right) + (|D_g| - n) \left(-\log \left(\frac{|D_g|}{|D|} \right) \right)
\]

Therefore, OIE$(r_n, g) = H(r_n, g) - \beta H(r_n, g)$ can be expressed as:

\[
-\sum_{i=1}^{n} -\log \left(\frac{i}{n!} \right) - (2\beta - 1) \sum_{i=1}^{n} \log \left(\frac{i}{n!} \right) - \beta \log \left(\frac{|D_g|}{|D|} \right)
\]

In order to satisfy the Deepness Threshold constraint, the effectiveness OIE(r_n, g) should tend to $-\infty$ then n is extremely large. Then:

\[
\lim_{n \to \infty} \sum_{i=1}^{n} \log \left(\frac{i}{n!} \right) = (2\beta - 1) \sum_{i=1}^{n} \log \left(\frac{i}{n!} \right)
\]

\[
\lim_{n \to \infty} \log \left(\frac{|D_g|}{|D|} \right) = \log \left(\frac{|D_g|}{|D|} \right)
\]

In order to satisfy Closeness Deepness constraint:

\[
\text{OIE}(r_n, g) < \text{OIE}(r_n, g) \leftrightarrow (1 - \beta) \left(-\log \left(\frac{n}{|D|} \right) - \beta (|N_g| - n) \left(-\log \left(\frac{|D_g|}{|D|} \right) \right) \right)
\]

\[
-\sum_{i=1}^{n} \log \left(\frac{i}{n!} \right) + (2\beta - 1) \sum_{i=1}^{n} \log \left(\frac{i}{n!} \right) - \beta \log \left(\frac{|D_g|}{|D|} \right)
\]
Assuming that \(\beta > 1 \) and \(N_d > n \), we need to prove that:

\[
\text{OIE}(r_1, g) < \text{OIE}(r_n, g) \iff (1 - \beta) \left(-\log \left(\frac{N_d}{|D|} \right) \right) - \beta(N_d - 1) \left(-\log \left(\frac{|D_d|}{|D|} \right) \right) < \\
- \sum_{i=n+1}^{2n} \log \left(\frac{i}{|D|} \right) + (2\beta - 1) \sum_{i=n+1}^{2n} \log \left(\frac{1}{|D|} \right) < \\
- \beta(|D_d| - n) \left(-\log \left(\frac{|D_d|}{|D|} \right) \right) \implies \\
(1 - \beta) \left(-\log \left(\frac{|D_d|}{|D|} \right) \right) - \beta(N_d - 1) \left(-\log \left(\frac{|D_d|}{|D|} \right) \right) < \\
- \sum_{i=n+1}^{2n} \log \left(\frac{|D_d|}{|D|} \right) + (2\beta - 1) \sum_{i=n+1}^{2n} \log \left(\frac{|D_d|}{|D|} \right) < \\
- \beta(|D_d| - n) \left(-\log \left(\frac{|D_d|}{|D|} \right) \right) \implies \\
(1 - \beta) - \beta(|D_d| - 1) < n + (1 - 2\beta)n - \beta(|D_d| - n) \iff \beta(-1 - |D_d| + 1 + 2n + |D_d| - n) < 2n - 1 \iff \beta < \frac{2n - 1}{n}
\]

Finally, regarding the \textit{Confidence} constraint, when adding a non-relevant document \(d \) in the last position of \(R \), the effect is that \(d \) is the only document which Observational Information Quantity changes. In addition, a non-relevant document according to \(g \) satisfies

\[\forall d' \in D \cdot g(d') \geq g(d) \]

which implies that \(I_r(g|d) = I_r|d \). Therefore, we can say that the increase of \(H(r, g) \) is equal than the increase of \(H(d) \). Therefore, according to the OIE definition, the score decreases whenever \(\beta > a_1 \), satisfying \textit{Confidence}.

\(\square \)

Proof. [Theorem 5.1: Ranking Mergability]

\[
\text{OIE}(I_{r \cup \{y\}}) \geq \text{OIE}(I_r) \iff H(I_{r \cup \{y\}}) - \beta H(I_{r \cup \{g\}}) \geq H(I_r) - \beta H(I_r \cup \{g\})
\]

Assuming that \(I_{r \cup \{y\}} \) and \(I_r \) are fine grained then:

\[
H(I_{r \cup \{y\}}) = H(I_r)
\]

Therefore:

\[
H(I_{r \cup \{y\}}) - \beta H(I_{r \cup \{g\}}) \geq H(I_r) - \beta H(I_r \cup \{g\}) \iff \\
- \beta H(I_{r \cup \{y\}}) \geq -\beta H(I_r \cup \{g\}) \iff \\
- \beta H(I_{r \cup \{y\}}) \geq -\beta H(I_r \cup \{g\}) \iff \\
\prod_{d \in D} P_d(d \geq t_{r \cup \{y\}}, d \geq g, d \geq 0) \geq \prod_{d \in D} P_d(d \geq t_r, d \geq g, d \geq 0) \iff \\
\prod_{i=1}^{i=n} \prod_{d \in D} P_d(d \geq t_{r \cup \{y\}}, d \geq g, d \geq 0) \geq \prod_{i=1}^{i=n} \prod_{d \in D} P_d(d \geq t_r, d \geq g, d \geq 0) \iff \\
\prod_{d \in D} P_d(d \geq t_{r \cup \{y\}}, d \geq g, d \geq 0) \geq \prod_{d \in D} P_d(d \geq t_r, d \geq g, d \geq 0) \iff \\
\prod_{d \in D} P_d(d \geq g, d \geq t_{r \cup \{y\}}, d \geq 0) \geq \prod_{d \in D} P_d(d \geq g, d \geq t_r, d \geq 0) \iff \]

which is true according to the Information Quantity Cumulative Evidence assumption.

\(\square \)