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ABSTRACT

This paper proposes a theoretical framework which models the
information provided by retrieval systems in terms of Information
Theory. The proposed framework allows to formalize: (i) system
effectiveness as an information theoretic similarity between system
outputs and human assessments, and (ii) ranking fusion as an infor-
mation quantity measure. As a result, the proposed effectiveness
metric improves popular metrics in terms of formal constraints. In
addition, our empirical experiments suggest that it captures quality
aspects from traditional metrics, while the reverse is not true. Our
work also advances the understanding of theoretical foundations of
the empirically known phenomenon of effectiveness increase when
combining retrieval system outputs in an unsupervised manner.
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1 INTRODUCTION

Most of the research in the field of Information Retrieval (IR) is
empirically-based. The effectiveness of retrieval approaches are
typically validated over large data sets, most of them developed in
the last decade. The effectiveness of ranking fusion and learning-to-
rank algorithms are also validated in an empirical way. In addition,
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effectiveness metrics are supported by empirical user behavior
studies or meta-metrics such as robustness or sensitivity [3, 17].

On the other hand, some works aim to provide explanations for
some phenomena observed in empirical experiments. For instance,
the Probability Ranking Principle [34] assumes that retrieval sys-
tems return documents ranked in order of decreasing probability
of relevance to the user. In the same way, based on empirical user
behavior observations, evaluation metrics are supported by the top-
heaviness principle [9], which gives more weight to highly-ranked
documents in the evaluation process. Studies in unsupervised rank-
ing fusion algorithms have reported empirically that the most ef-
fective combinations of rankings are those in which the relevant
documents are unanimously early-ranked, while the retrieved non-
relevant documents vary across rankings [24, 35]. Likewise, other
studies have reported empirically that human assessments can be
replaced successfully —at least to some extent— by the average of
system outputs in an evaluation campaign [6, 33].

In this paper, we aim to define a theoretical framework which
models the phenomena described above. The framework is based
on the notion of Observational Information Quantity: Rather than
focusing on document content, this framework models the infor-
mation provided by retrieval systems (document rankings) and
human assessors in terms of Information Theory [31]. On the basis
of observational information quantity we then define an entropy-
like notion that allows the formalization of system effectiveness as
an information-theoretic similarity between system outputs and
human assessments. The proposed framework also models ranking
fusion as an information quantity measure.

The resulting effectiveness metric improves most of existing
metrics in terms of formal constraints. In other words, the proposed
framework gives a basis —grounded in Information Theory- for
effectiveness metrics, which were traditionally supported by user
behavior modeling. Additionally, our experiments corroborate this
analysis, showing that the proposed metric captures quality aspects
from traditional metrics, while the reverse is not true.

On the other hand, our work provides a theoretical foundations
of the empirically-known phenomenon of effectiveness increase
when combining retrieval system outputs in an unsupervised man-
ner. Our experiments also check empirically the assumptions in
which the proposed theoretical framework is grounded.

Let us remark that this work does not attempt to provide better
solutions than those presented in previous work; rather we aim at
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defining a global theoretical framework on which to base future
improvements.

The rest of the paper is organized as follows. Section 2 discusses
related work and Section 3 introduces the theoretical framework
based on Observational Information Quantity. Section 4 analyzes
how our proposed framework can be used to inform an effective-
ness evaluation metric that satisfies a set of formal constraints.
Section 5 describes the justification of ranking fusion based on Ob-
servational Information Quantity. Section 6 connects the definitions
of our framework with those of the classical Information Theory
by Shannon. Finally, Section 7 concludes the work.

2 RELATED WORK

2.1 Measuring Effectiveness

Most of current metrics estimate effectiveness by assuming an
underlying user model for browsing relevant and non-relevant
documents returned in the system output ranking. For instance,
Discount Cumulative Gain [20] assumes that the probability of ex-
ploring deeper ranking positions decreases in a logarithmic manner.
Expected Reciprocal Rank (ERR) [10] assumes a cascade model in
which the user is looking for a particular document. Rank-Biased
Precision (RBP) [27] assumes that a fixed probability of exploring
the next document in the ranking. According to the analysis by
Amig6 et al. [3] none of the most popular metrics satisfies com-
pletely a set of five formal constraints. RBP satisfies four of them
but not the confidence constraint, which penalizes the addition of
non-relevant documents at the end of the ranking.

Some authors have focused on explaining evaluation metrics in
terms of Measurement Theory, tackling the issue of the suitabil-
ity of the interval scale assumption [16] or interpreting metrics
as an homomorphism (measurement) between effectiveness and
systems [15]. These works state formal constraints and desirable
properties, but they do not derive any particular approach.

In this paper, we apply an information theory-based similarity
measure to compare system outputs against the gold-standard. Our
theoretical analysis shows that user behavior based constraints
can be satisfied by grounding the metric in information theory
principles.

2.2 Ranking Fusion

Finding a theoretical explanation for the effectiveness of combin-
ing system outputs in an unsupervised manner has been largely
explored in the literature. This problem has been modeled from
two closely-related perspectives: classifier ensembles and ranking
fusion.

From the first perspective, the literature shows that combining
classifiers is effective when the individual classifiers are accurate
and diverse. Hansen and Salamon [18] proved that if the average
error rate for an example is less than 50% and the component clas-
sifiers in the ensemble are independent in the production of their
errors, the expected error for that example can be reduced to zero as
the number of classifiers combined goes to infinity. This theoretical
analysis was actually reported by the Condorcet’s jury theorem
in 1785 [7, 12]. However, such assumptions rarely hold in practice.
Krogh and Vedelsby [22] later formally showed that an ideal en-
semble consists of highly correct classifiers that disagree as much

Table 1: Example of system outputs and human assessments.

Rank r
1 r2 r3 Human assessments g
1 ri(di)  ra(ds) r3(ds)
di) =g(ds) =1
2 ri(dz)  ra(d1) r3(d1) g(dr) = g(dy)
3 ri(ds)  r2(dz) r3(dz)

g(di=2356,...) =0

n/a () ri23(ds,ds,...) =0, ra3(dy) =0

as possible. In general, a point of consensus is that when the classi-
fiers make statistically independent errors, the combination has the
potential to increase the performance of the system. Other studies
assume correlation between signals, but equal performance and
homogeneous correlation [21], which is also non-realistic in the
context of information systems. Matan [26] analyzed the upper and
lower bounds of classification of a majority based ensemble. In the
particular context of information retrieval tasks, Shaw et al. [32]
found that the best combination strategy consisted of summing the
outputs of the retrieval algorithms, and Hull et al. [19] found that
the best improvement in performance in the context of a filtering
task came from the simple averaging strategy.

From the ranking fusion perspective, Montague and Aslam [28]
reported an important improvement of unsupervised combined
systems w.r.t. the best single system in multiple TREC test beds.
In addition, just like in the classification scenario, the need for
avoiding redundant systems has been reported in the context of
ranking fusion. For instance, Nuray-Turan and Can [29] reported
effectiveness improvement when selecting rankings that differ from
the majority voting in the ranking fusion process. Lee [24] and later
Vogt and Cottrell [35] found that the best combinations were be-
tween systems that retrieve similar sets of relevant documents and
dissimilar sets of non-relevant documents. There exist other works
that reformulate ranking fusion algorithms in terms of probability
estimations, always under the independence assumption [5, 8, 25].
Finally, Amigd et al. [1] proposed an extension of the notion of In-
formation Quantity in order to generalize different ranking fusion
methods in the context of text similarity. In this paper, we review
this notion extending it to observational entropy.

3 OBSERVATIONAL INFORMATION
QUANTITY

3.1 An Example

Let us start with a simple example that considers the output of a
set of information retrieval systems as in Table 1. The collection
D contains a large amount of documents. There are three systems
s1, s2, and s3 that return different documents producing rankings
r1, r2, and r3 of length 3. We assume that documents out of these
rankings share the same infinite rank.

Rather than considering the content of the documents, we observe
the documents from the perspective of a set of information retrieval
systems. The first step should be being able to measure the quantity
of information provided by systems or human assessments for
single documents. This information measurement should satisfy
the following three properties.



First, the more a document is highly ranked according to a re-
trieval system, or relevance scored according to human assessors,
the more the document is discriminated against the large collection
(increasing informativeness). For instance, according to r; in the
example, we have more information about the relevance of d; than
da.

Second, the earlier documents are ranked according to different
systems, the more information about their relevance we observe.
This is in line with the conclusions found in previous work [24, 35]:
the most effective combinations of rankings are those in which the
relevant documents are unanimously early ranked, while the re-
trieved non-relevant documents vary across rankings. For instance,
dy occurs at the first or second position in every ranking. Therefore,
we have more information to estimate the relevance of d; than
other documents.

Third, redundant systems provide less information than non-
redundant systems. In relation to this, the profits of combining non-
redundant systems have been reported in both the ranking [29]
and classification [22] scenarios. For instance, d3 is ranked in the
first position by rz and r3, but both rankings seems to be similar,
that is, they seem to be providing the same information.

3.2 The Framework

Let us consider a set of relevance signals, T', which consists of the
set of rankings and human assessments, I = {rq,. .. ,rn,g}l, which
assign scores to documents in a collection of documents, D. Then,
we define unanimous outscoring as follows.?

Definition 3.1. A document, d, is unanimously outscored by an-
other document, d’, according to a set of signals, T, whenever it is
outscored for every signal simultaneously:

d >rde=Vyel.yd)2y().

In the following we will use both <r and >r, with the obvious
meaning. Going back to the example in Table 1, we obtain the
following outscoring relationships regarding to dj, . . .,ds. Being
T = {r1,r2,r3,9} (note that we also take into account the human
assessments in the ground truth g):

di 2rdy di,dy 2rd;
ds >rds dy,d4 >rds.

ey

Documents dj and d3 are only outscored by themselves, i.e., there
is no other documents that is unanimously ranked earlier in T. d3
is outscored by dz and d; (including g). Likewise, d4 is outscored
by itself and also by dj, given that it is corroborated by the three
rankings and the gold g.

Then, the observational information quantity of a document is
defined as follows.

Definition 3.2. The Observational Information Quantity, It (d)
of a document, d, under a set of signals, T, is the minus logarithm of
the probability of being unanimously outscored by other documents:

Ir(d) = -log (Pyrep(d 2r d)). )

!We will use y € T to refer to signals in a general manner.
2We assume that earlier rank positions correspond with higher scores.

In other words, the more a document is unanimously outscored
simultaneously in all signals by other documents, the less the docu-
ment is informative. In consequence, highly informative documents
are those that are highly scored by all rankings and the human as-
sessment.

For instance, going back to the example in Table 1 and taking
into account inequalities in Eq. (1), the Observational Information
Quantity of document documents is:

I (dr) = —1og(|%|), I (d) :—log(%),

I (ds) = —1og(|%|), I (ds) = —log(%).

Documents that obtain the lowest score by all signals (i.e., doc-
uments that are both non-retrieved and non-relevant) obtain the
lowest Observational Information Quantity, as they are outscored
by d1, dz, d3, d4 and by themselves:

Vi€ (5,6,...}). Ir(di) = —log(%) =0.

Our formalization of observational information quantity matches
with the definition provided by Amigo et al. [1] for similarity mea-
sures fusion. Here, we extend it to define an entropy-like notion.

Definition 3.3. The Observational Entropy, H(F) of a set of sig-
nals, T, is the expected observational information quantity across the
document set, D:

H(r) - Yden fr(d)_
DI

Intuitively, the observational entropy of a set of signals rep-
resents the extent to which finding unanimous improvement is
unlikely. Thus, non-correlated signals will tend to achieve a higher
entropy. Also note that this definition is inspired by the classical
Shannon’s Entropy, but it differs from the original because it uses
two different probability distributions: the probability distribution
of outscoring (the one used in Equation (2)) and the probability dis-
tributions of a document (ﬁ) Section 6 explains the connection
between traditional and observational information quantity. For
the sake of simplicity, we will denote hereafter the entropy for a
single signal set as H(y)

3.3 Properties

Observational Information Quantity and Observational Entropy
satisfy the following general properties, that will be useful in the
following, 4

PROPERTY 3.1. Forally € T, Ir (d) is monotonic w.r.t. signal
values y(d):
dy >r dy = I[‘(dl) > I[‘(dz).

Property 3.1 implies the following corollary.

COROLLARY 3.2. The observational information quantity of a doc-
ument under a single signal grows with its signal value:

Iy (d) & y(@).

3Note that the probabilities are computed as frequencies.
4See formal proofs in Appendix A.



PROPERTY 3.3. Both observational entropy and observational in-
formation quantity do not decrease when adding signals to the setT.
Given a signaly ¢ T:

Trogyy(d) = I (d)
H(T'U{y}) > H(T).

PROPERTY 3.4. The observational entropy of a single ranking de-
pends exclusively on its length. More formally, being y a signal such
that

y(d1) > y(d2) > ... >y(dn) > y(dn+1) =y(dn+2) = ...,

then: "
1 i
H(y) = _ﬁ ;log (@) .

PROPERTY 3.5. Observational entropy and observational informa-
tion quantity are invariant under redundant signals. Being f any
strict monotonic function (i.e., a function that does not affect the
ordinal relationships)

Irugy}(d) = ]FU{y,f(Y)}(d)
H(ruiy) =H(Tuir.fm)).

This aspect is crucial when representing documents in terms
of systems output signals. Redundant systems should not increase
the observational information quantity of documents. In addition,
adding a non-redundant signal increases strictly the entropy of the
signal set.

PROPERTY 3.6. If a preference between two documents iny is not
corroborated by any signal inT, ie.,

Adi,dz € D. (dy 2(y) d2 Ady <1 da),

then the entropy strictly increases when adding the signal to the set,
ie.,
H(r) <H(Tu{r}).

4 MEASURING EFFECTIVENESS

We now show how the above definitions and properties can be
exploited to define an effectiveness measure that satisfies formal
constraints which are not satisfied by traditional metrics.

4.1 Observational Information Effectiveness

As we said in the related work section, instead of modeling the user
behavior in the seeking process, we apply an information theory
based similarity measure to compare system outputs against the
gold-standard, but using our notions of observational information
quantity and entropy. More specifically, we use the Information
Contrast Model (ICM) [2]. ICM is a parameterizable extension of
Point-wise Mutual Information which satisfies a set of constraints
whenever its parameter are within a certain range [2]. We start by
defining a notion of effectiveness for a signal.

Definition 4.1. Given a signal, y, and a relevance gold standard, g,
then the Observational Information Effectiveness (OIE) of the signal
is a linear combination of observational entropies as follows:

OIE(y,g) = a1 - H(y) + a2 - H(g) - B- H(ly.g}). (3

where a1,a2, € R* and @ and ay weight the effect of the
ranking and assessment entropy. Hereafter, we will consider a1 =
az = 1 for the sake of simplicity. Note that the entropy of a single
ranking with a fixed length is constant (Property 3.4). Therefore,
when evaluating single rankings (i.e., when I = {r}) with a fixed
length under a fixed gold, the parameters a; and ay do not affect
the relative effectiveness of systems, which depends exclusively on
the component H({y,g}).

4.2 Satisfying Formal Constraints

We are interested in comparing the proposed metric with the state-
of-the-art. Comparing metrics empirically against user satisfaction
or search effectiveness requires data that is often unavailable and ex-
pensive to collect. Moreover, findings may be biased to the subjects,
retrieval systems or other experimental factors.

An alternative consists of studying evaluation metrics under
formal constraints. Amigé et al. [3] defined a theoretical frame-
work according to five formal constraints: swapping contiguous
documents in concordance with the gold increases effectiveness
(priority constraint, Pri); the effect of swapping is larger at the top
of the ranking (deepness constraint, Deep); retrieving one relevant
document is better than a huge amount of relevant documents after
a huge set of irrelevant documents (deepness threshold constraint,
DeepTh); there exists a certain area at the top of the ranking in which
n relevant documents is better than only one (closeness threshold
constraints, CloseTh); and finally, adding irrelevant documents at
the bottom of the ranking decreases effectiveness (confidence con-
straint, Conf). According to this study, among the most popular
metrics, only the Rank-Biased Precision (RBP) metric [27] satisfies
the first four constraints. The following theorem states that OIE
satisfies these five constraints.

THEOREM 4.2. Information Evaluation Theorem OIE satisfies
the five constraints defined by Amigoé et al. [3] whenever 1 < f <
2”n_1 , being n the minimum amount of documents that are necessarily

explored by the user

Surprisingly, these theoretical boundaries for  correspond with
those predicted by Amigd et al. [2] for the ICM similarity model,
even though ICM is grounded on a different axiomatics, oriented
to the general notion of similarity.

4.3 Experiment

Although this work is mainly theoretical, we performed a brief ex-
periment comparing OIE against traditional metrics. Here, we use
the meta-metric Metric Unanimity (MU) [4]. MU quantifies to what
extent a metric is sensitive to quality aspects captured by other
existing metrics. The intuition is that, if a system improves another
system for every quality criteria, this should be unanimously re-
flected by every metric. A metric that captures every quality criteria
should reflect these improvements.

MU is formalized as the Point-wise Mutual Information (PMI)
between metric decisions and improvements corroborated by all
the metrics in a given set of metrics, M. Formally, given a metric,

5n is a variable defined for the closeness deepness threshold constraint [3].



Table 2: Traditional metrics and Observational Information
Effectiveness (OIE), ranked by Metric Unanimity (MU) [4].
@ indicates that the metric satisfies the formal constraint,
O indicates otherwise.

Metric MU Pri Deep DeepTh CloseTh Conf
Oz, 0928 ® @ ° ° °
OIEs-; 0927 @ ® o O O
RBP 0.926 @ [ ) [ J [ J O
DCG 0914 @ [ ) O [ J O
AP 0910 @ o O o O
P@100 0910 O O ° ° O
DCG@50 0.905 O O o ([ J O
ERR@50 0.903 O O o O O
ERR 0.901 [ } [ ) [ ) O O
P@50 0.900 O O o o O
ERR@20 0.88 O O ° O O
DCG@20 0.886 O O [ ] [ ] O
P@20 0.876 O @) o o O
P@10 0829 O O ° ° O
RR@10 0.162 O O ° @) O

m € M, and a set of system outputs, R:°

MU p(, g (m) = PMI (Am; j,AM; ;) = log (P(Ami,,»)p(AM,-,j)) )

In the equation, Am; j and AM; ; are statistical variables over sys-
tem pairs (r,r;) € R?, indicating a system improvement according
to the metric and to every metric, respectively:

Am;j = m(ri) > m(r)
AM;j=Vme M (m(ri) > m(’j)) :

Note that MU is closely related with the unanimity notion in
observational information quantity. The reader could thing that
there exists some theoretical over-fitting here. However, MU and ob-
servational information quantity (Ir (d)) measure different things.
MU p( » (m) measures the correspondence between a metric and
the whole set of metrics (system rankings), while It (d) combines
system outputs (document rankings).

In all our experiments, we used the Gov-2 collection and the
topics 701 to 750 used in the TREC 2004 Terabyte Track [11]. We
also used the 60 official runs submitted by the participants to the
track. Table 2 shows the MU results for OIE with = 1.2 (an arbi-
trarily selected value in the theoretical grounded range), and other
standard evaluation metrics including: OIE with § = 1 (out of the
theoretically grounded range), Precision at cutoff k (P@k), Aver-
age Precision (AP), Reciprocal Rank (RR) [36], Expected Reciprocal
Rank (ERR@k) [10], Discounted Cumulative Gain (DCG@k) [20]
and Rank-Biased Precision (RBP) [27]. For OIE, we have considered
the cutoff point at position 100. For the rest of metrics, we have

®Note that the a priori probability of system improvement for every metric is fixed
P(Am; ;) = % That is, in the cases where two system outputs obtain the same score
m(s;) = m(s;), we add 0.5 to the statistical count.

considered the cutoff positions 20, 50 and 100. For the RBP metric,
we have considered the values 0.8, 0.9 and 0.99 for the parameter p.

As the table shows, metrics with shallow cutoffs (20 or 50) and
RR, which stops at the first relevant document, are at the bottom of
the MU ranking, given that they capture only partial aspects of the
ranking quality. On the other hand, OIE_; ; improves the rest of
metrics in terms of MU. The improvement of OIE4_; , regarding
OIEg-; corroborates the theoretical analysis about the § ranges.

Interestingly, RBP (the third ranked metric) is the only one that
satisfies the four first constraints according to the study by Amigé
etal. [3]. Note that we obtained the same Unanimity for RBP regard-
less the p parameter (p € {0.8,0.9,0.99}). The improvement in MU
for OIE compared against RBP is probably due to the Confidence con-
straint. Some rankings have less than 100 documents. The benefit of
avoiding non-relevant documents at the end of the ranking is only
rewarded by OIE in this metric set. Note also that some metrics such
as DCG satisfy the Deepness Threshold constraint when adding
a ranking cutoff, but this is at the cost of Priority and Deepness,
given that documents at deep positions are not considered.

This experiment can be extended for more metrics, meta-evaluation
criteria, and data sets. In this paper we focus on the Observational
Information Quantity as a theoretical framework that can be ap-
plied to different phenomena in IR. Our formal analysis shows that
effectiveness can be grounded in the Observational Information
framework.

5 UNSUPERVISED RANKING FUSION

We now turn to applying the framework to the problem of ranking
fusion.

5.1 Information Quantity Cumulative Evidence

As we mentioned in the introduction, the experience in most of ex-
periments reported in the IR literature corroborates the Probability
Ranking Principle. For instance, precision/recall curves tend to be
descendant for every system. Given that 7, (d) is correlated with
the position of d in the ranking r (Property 3.2), we can say that the
probability of relevance increases with the Observational Informa-
tion Quantity under a single signal. We generalize this phenomenon
for multiple signals stating the following assumption.

AssuMPTION 1. [Information Quantity Cumulative Evidence] Adding
signals increases the probability of improving relevance under an Ob-
servational Information Quantity increase

P(d2gdo|d2p,,, do)>P(d2gdo|d=p do).

Note that according to Property 3.2, the observational informa-
tion quantity 7, under a single signal y shorts documents in the
same manner than y. Therefore, we can directly infer from this
theorem that an increase according to the It is more reliable than
an increase of signals in isolation.

In order to check this assumption empirically, we make a pooling
from the first 100 ranked document for each system output in our
data set. Here, we consider that documents not present in a partic-
ular ranking y are scored with the lowest signal value according to
y- In each experiment:

(i) we randomly select one topic and a set I of five system outputs;
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Figure 1: Checking the Information Effectiveness Additivity
proposition.

(ii) we compute the observational information quantity 7 (d) for
each document under this set of measurements I';
(iii) we select one single signal (one system output) y from T;

(iv) We compute the conditional probabilities P (d 24 d'ly(d) = y(d’))

and P (d 2gd'|ld =g, d’).That is, the relevance increase, when
increasing the system score according to y and when increas-

ing the observational information quantity Jt.
Each dot in Figure 1 represents one experiment, thus, one topic,
five signals and one single signal from this set. The horizontal
axis represents P (d 2gd'|d >y d’). The vertical axis represents

P(d 2y d'|d 2, d’). As the figure shows, the Information Effec-
tiveness Additivity proposition practically always holds.

5.2 Ranking Fusion by Observational
Information Quantity

The ranking fusion model proposed in this paper consists of the
combination of system outputs in a single signal according to the ob-
servational information quantity of documents. That is ypysion (d) =
Ir(d). Then, we can state the following theorem.

THEOREM 5.1. [Ranking Mergeability:] Under the Information
Quantity Cumulative Evidence, and assuming that the information
quantity estimation is fine grained, the effectiveness of Ir for any
P values in the interval (1,2) is higher than the effectiveness of any
single measurement y € T':

OIEgc(1,2) (IFU{y}vg) > OEge(1,2) (Ir.9) -

This theorem has strong practical implications. For instance, it
means that instead of evaluating five systems, we can directly join
them to achieve the best result. However, the Effectiveness Addi-
tivity Theorem has an important limitation, which is the need for
high granularity in Jr. That is, we need a huge amount of docu-
ments and an extremely costly computation process to accurately

10
— 207
(@)}
=
=
L -30
O
-40-
-50 1

-5IO -40 -3IO -2IO -10
OIE <y,g>

Figure 2: Experiment for checking the optimality of I as
ranking fusion method.

estimate the probability of improvement for all measurements. In
addition, there exist some theoretical limitations for the granularity
in particular situations. For instance, two documents appearing
at the first position of two different rankings have necessarily the
same I, which is ﬁ

Let us check the Ranking Mergeability theorem empirically. To
this aim, we emulate fine-grained single signals and It as follows.
We start by generating random samples of five signals T, and one
single signal y from I'. Then, we collect documents from the single
ranking y progressively from the top to the bottom, but discard-
ing documents that achieve the same Jr than previously collected
documents. This will generate a set of documents 9’ such that:

Vdy.dy € D' Ir(dy) # Ir(dz) AVy € T.y(dr) # y(da).

Finally, we compare the effectiveness of y and JT in terms of OIE
(using f = 1.2) across all topics, without considering the rest of
documents.

Figure 2 compares the effectiveness of the single signal OIE(y,g)
(x-axis) against the effectiveness of the combined signals OIE(JT, g)
(y-axis). In our experiments, OIE(IT,g) > OIE(y,g) for 1,809 out of
2,000 cases.

As the theory predicts, I outperforms the single signal in almost
all the cases. Notice that the improvements are less prominent than
in the previous experiment. The first reason is that we are consider-
ing rankings instead of probabilities under non strict comparisons
between signal values. The second reason is that OIE captures top
heaviness, giving more weight to documents located at the top of
rankings.
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5.3 Borda Count as an Approach to
Observational Information Quantity

An important drawback of the Observational Information Quantity
as a ranking fusion method is the need for a huge amount of sam-
ples in the estimation process. The reason is that the probability of
unanimous outscoring decreases dramatically when adding signals.
A common way of estimating joint probabilities under a limited
amount of data consists of assuming independence across variables
(P(A,B,C) =~ P(A) - P(B) - P(C)). In this subsection we show that
Ir converges into a Borda Count variant consisting of averaging
the logarithm of rank positions instead of the original ranking posi-
tion. Note that Borda Count is the most popular way for averaging
rankings. As described in Section 3, our It definition matches with
the Information Quantity defined by Amigé et al. [1] for similarity
measure fusion. In their paper it is proved that this definition con-
verges to other common ranking fusion algorithms depending on
statistical assumptions. In particular, they prove that:

PROPOSITION 5.2. Assuming statistical independence, the Obser-
vational Information Quantity of a document under a set of rankings
corresponds with the average logarithm of ranking positions:

It (d) o Avgy, cr log(rank;(d)).

Therefore, according to our analysis, in terms of Observational
Information Effectiveness, if the independence assumption can be
assumed, the Borda),; ranking fusion should be at least as effective
than the best single system output. In addition, Bordajo, should
achieve a similar or better effectiveness than the original Borda
algorithm.

Figure 3 illustrates the effectiveness of the original Borda, Jr
under the independence assumption (BordaLog) and each system
in our experimental data set. We have used the f value 1.2 accord-
ing to the experiments in previous section. In order to evaluate
outputs under the same conditions (fixed ranking length), we have
truncated the Borda and BordaLog outputs in position 100 just like
single systems. The figure shows that, in concordance with the
theoretical analysis, both fusion methods practically achieve the
same performance as the best system in the combination.

6 CONNECTING WITH TRADITIONAL
INFORMATION THEORY

Probably, there are many possible theoretical explanations for the
observational information framework. Signals (retrieval system

outputs) in IR are quantitative, while the traditional information
theory measures the information quantity of events characterized
by binary features. On the other hand, Differential Entropy considers
a continuous space of signals, but it does not allow to estimate the
information quantity of a single event in this continuous space.

We now describe our proposed derivation for the observational
information framework. We start by representing object observa-
tions as fuzzy sets. This allows us to capture both the amount of
signals and their quantitative projection into each object. Then,
we use the Dempster-Shafer theory of evidence [14, 30]. In par-
ticular, we use the belief function over the fuzzy set operators in
order to estimate the information quantity of observations. Note
that the proposed model differs from other approaches based on
Demster-Shafer theory which focus on document content repre-
sentation [13, 23].

A fuzzy set is formally defined as:

Definition 6.1. A fuzzy set is a pair (A, f) where A is a set and f
a membership function f : A— [0,1].

Then, an observation can be formalized as follows.

Definition 6.2. Given a set of signals, I' = {y1,...,yn}, and a
set of possible values generated by each signal, {x1,...,x}, an
observation, Or(x1,. . .,xp), under I is a fuzzy set of signals whose
membership function corresponds to the signal values: A = T and
fQyi) =xi,Viefl,...,n}.

In other words, a document observation has two main com-
ponents: the signals under which the document is observed and
the corresponding signal values. From the previous definition we
can infer that each document, d € D, produces an observation,
Or(y1(d),...,yn(d)), denoted as Or(d).

According to the inclusion operator in fuzzy sets, an observation
is included into another when:

Or(x1,...,xp) COp(x],...,xp) & Vi=1,...,mx] > x;.

1P

The purpose of Dempster-Shafer’s theory is to represent be-
lieves in a set of elements referred to as a frame of discernment. We
can consider the believe function defined on the observations of
documents, this is possible by taking into account the inclusion
relationship between observations.

Then, applying the Dempster-Shafer evidence theory, we define
the mass function or Basic Probability Assignment (BPA) as the
probability of observations across the set of documents D. Being
® an observation:

m(@) = Pgep (Or(d) = o).

Consequently, the corresponding belief function of an observa-
tion w’ is:
Bel(w') = Z m(w).
w|lw2w’
And therefore, the belief of a document observation can be ex-
pressed as:

Bel(Or(d) =
w|w20r(d)

The last identity is attained by considering that observations are
actually a partition of the document space.

Pyep(o=0r(d)) = Parcp(Or(d) 2 0r(d)).



Then, the observational information quantity is analogous to
the information quantity in Shannon’s theory but replacing the
probability with the belief function:

Ir(d) = I(Or(d)) = —log(Bel(Or(d)))
—log(Pyep(Or(d’) 2 Or(d)))
—log(Pgep(d’ zr d)),

which leads directly to Definition 3.2.
The entropy of a set of signals is directly derived from the tradi-
tional notion. That is, the expected information quantity:

H(T) = ) - ) P(xt, o x)[(Or((x1,- - -, %n))
= > Pacp(o = Or@)Ird) = 5 Y (@),
WeQp deD

which leads to Definition 3.3.

7 CONCLUSIONS

We have shown how -by starting from the Shannon-like defini-
tions of Observational Information Quantity and Observational
Entropy- we can provide a theoretically grounded explanation of
phenomena that are well known results of empirical experiments.
In this paper we have focused on effectiveness metrics and ranking
fusion. Effectiveness can be modeled in terms of information theory
—Observational Information Effectiveness (OIE), which is based on
the similarity between system outputs and human assessments. OIE
satisfies desirable properties that are not satisfied by traditional
metrics. Moreover, our experimental results suggest that OIE cap-
tures aspects from different existing metrics. Regarding the ranking
fusion problem, we have seen that, under certain assumptions, the
observational information quantity outperforms single signals.

This current work has known limitations, given that the estima-
tion of observational information quantity is not straightforward. In
the near-future we plan to apply our general framework to explain
other phenomena that are important in Information Retrieval, such
as evaluation without relevance assessment and query performance
prediction.
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A FORMAL PROOEFS Given that log(+~ 41} js positive and monotonic regarding i, both the priority

PROOF. [Property 3.1] and deepness constraints are satisfied.
According to Definition 3.2, if Yy € T (y(d;) > y(d,)) then: Regarding the threshold constraints, being Dy the set of documents
annotated as relevant in the gold standard. Let r; a ranking which retrieves

[r(dl) =—log (Pd/g@ (d, 2r dl)) = only one relevant document, its OIE is:

~log (Paep(d 21 d2)) = T (d2) OIE(r1.g) ~ H(ry) - BH(Ir1. )

PrOOF. [Property 3.3] o I(rl)(d) -p Im’g)(d) + Z I{,bg;(d')
According to Definition 3.2: d’eDg-{d}

IFU(Y}(d) =—log (Pd’el)(d, 21Uty d)) > ) D,
~log (Parep(d’ 21 d)) = fr(d) -1 ) - | 1157 - vBa ({27 )|

Luco T (d) _ Saen 5(d) = 1= (-1 ) - 251 (157
o = o1 - 20

And therefore:

HIU{y}) =

O On the other hand, let r,, a ranking which retrieves n relevant docu-
ments after n non relevant documents, then, H(r,) is — Z?Zl log (ﬁf‘)

ProoF. [Property 3.4] and H({rn, g}) is proportional to:

Yaen fiyy(d)  Tacp —log (Pawren(d 2(y) d))

n i 2n
Dyl
H({y}) = = = 1 log (=) + (1Dg1 - ) (1og [12¢!
1D 1D ; €| 1p| FZM og IDI *(IDg| = n) |~ log{ <70
n
51 2 o("2) o 1Dy |
=-2) log|— Ny - 1
- ;"g(lﬂl)” o= (-1ex (7))
D 12
PrOOF. [Property 3.5]
Being f any strict monotonic function (i.e. does not affect the ordinal rela- Therefore, OIE(r,, g) = H(rn) — PH({rn, g}) can be expressed as:
tionships)
~ i < i 1Dy |
Ty (d) = ~log (Paren (¢ 2ruiy) d)) = ‘Z‘°g(ﬁ) P (‘ZZ“’g(@) 3 =) -t 157 )))
~log (Paren (@' 2ruty.rn d)) = Froty.fo1(d) 1Dy |
and therefore: 3 log( |z>|) +(2p - 1>Zlog ( |z>|) B(Dg - ) ( log( = ))
H(ru{y}) =H(T U ly.f(r)) i=ntl
]
Proor. [Theorem 4.2 (Observational Information Evalua- In order to satisfy the Deepness Threshold constraint, the effectiveness
tion Theorem)]: Let be D the collection of documents. For our purposes, OIE(rn, g) should tend to —co then n is extremely large. Then:

we can ignore the H(g) from OIE given that it affects equally to every com-

2n n .

pared outputs. lim — 1 _ 1

Regarding the priority and deepness constraints, when swapping two Py ; ;r L o8 IZ)I ZZ; 1D|
contiguous documents in the ranking in concordance with the gold (g(d;) = IDg
0,g(di+1) = 1): - B(IDg |*")( (7))
OIE(rq;od;,,) — OIE(r) = H(rg,0q,,,) — BH(rq;04;,,-9}) — H(r) + BH({r, g}) 2n n .
:_ﬁH({rdiniH,g})+ﬁH({rsg})DC_H({rdiniH,g})+H({r’g}) nhj,]go_ Z log(lz)l) Zlog(|D|)

i=n+1 i=1

& Z ‘Z[rvg)(d) - Z ]—(rdi‘_’di+1’g) (d) - i i

deD deD lim —Zlog(—)+(2ﬂ—l)Zlog(—) =
— =1 1] i=1 1D
_-Z-{r,g}(di) +J’§r,g}(di+l)_]-{rdini+l,g}(di)_-Z-{rdi(_,di+1,g](di+1) n )
Given that in both rankings the amount of relevant documents above the lim (2 - 2) Z log (ﬁ) = —oco whenever f > 1

n—oo £

relevant document d; 1 is equal, and therefore:

Lir.g) (di+1) = Dirg,0d,,,-9) (dm)

Therefore, the previous expression is equivalent to: In order to satisfy Closeness Deepness constraint:

]{’vg}(d") - I(rdiniﬂ’g’(di)

ID,|
= —log (Pa(d 2(g,1) di)) + log(Pa(d = OTE(1.) < 07 ) 1) -1 135} - BNy = -1 157 <

(9.7 d;0d5,,) 91))

:_10g(|1')|)+10g("|%|1)zlog(zjl) - Z log(lz)l)+(2ﬂ 1)Zlog(|z)|) B(IDy| - (log(||Dg||))

i=n+1




Assuming that 8 > 1 and Ny > n, we need to prove that:
OIE(ry, g) < OIE(ry, g) <

oo ) oo )

S o8 121 + @8- 3 .

_iﬁ_(rlHDlg|—n)( 1og(||Dg||))i_‘:’+1
- (-5 - ﬁ(Ng_l)(_l°g(%))<
T2, (IDI) @ 3 ('D')

i=n+1

—ﬂ(ng|—n>( mg('lg,'))@

(1-p) - B(IDgl=1) < n+(1-2)n - f(|Dg| - n) &

2n—-1
B(-1—|Dg|+1+2n+|Dg|l-n)<2n-1e <

Finally, regarding the Confidence constraint, when adding a non-relevant
document d in the last position of r, the effect is that d is the only document
which Observational Information Quantity changes. In addition, a non-
relevant document according to g satisfies

d € D.g(d) > g(d)
which implies that 7, g (d) = Iip (a') Therefore, we can say that the
increase of H({r, g}) is equal than the increase of H({r }). Therefore, accord-
ing to the OIE definition, the score decreases whenever f > «;, satisfying

Confidence.
0

Proor. [Theorem 5.1:Ranking Mergeability]
OIE(Zru(y)) > OIE(Ir) =
H(Iruyy) - BH(Iruiyy Y {g)) 2 H(Ir) - BH(Ir U {g})
Assuming that Jryyy) and Ir are fine grained then:
H(Iruiyy) = H(Ir)
Therefore:
H(Irupyy) = BH(Irugyy Y ig)) = H(Ir) = BH(IT U {g}) =
- BH(Iruiyy Y {g}) 2 -BH(Ir U {g}) =
- H(Iryyy Y igh) 2 -H(Ir U {g}) =
HPd(d >y 40> d 29 do) 2 ﬂPd(d >pp do.d 24 dy) =
doy

dy

[ %ﬂPd(d 21y dod 29 do) 2 [ %]_[Pd(d 2pp do,d 2g dy) =

i=l.n " dy i=l.n " dy

Pa(d 21, do,d 24 do) N Py(d 2 do, d 24 do)
do Pd(d Zupy) do) - do Pd(d = do)
[[Pa(d 2g do|d 21, ) ]_[Pd (d 2 do |d 21 do)
dy

which is true according to the Informatlon Quantity Cumulative Evidence

assumption. O
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