
Towards a Basic Principle for Ranking Effectiveness Prediction
without Human Assessments: A Preliminary Study
Enrique Amigó

UNED NLP & IR Group

Madrid, Spain

enrique@lsi.uned.es

Stefano Mizzaro

University of Udine

Udine, Italy

mizzaro@uniud.it

Damiano Spina

RMIT University

Melbourne, Australia

damiano.spina@rmit.edu.au

ABSTRACT
We present in this paper a preliminary study about the Observa-

tional Information Linearity (OIL) assumption as a basic principle

that explains the accuracy of pseudo relevance assessments in the

IR literature. The proposed model predicts the effectiveness drop

curve along positions in a single ranking, the relative performance

of two rankings, and converges into the traditional pseudo assess-

ment method when considering multiple rankings and statistical

independence between them.
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1 INTRODUCTION
Most of the research in the field of Information Retrieval (IR) is em-

pirically based [1]. There is a general consensus this methodology

is producing multiple obstacles to the community; document and

query bias in data sets, human annotator and instruction bias, data

set overfitting, etc. From our point of view, our community needs

to complement empirical studies with other methodologies in order

to advance in the development of reliable solutions for IR tasks.

Just like in others research areas, non-empirical methods require

basic principles on which to base system improvements. In fact,

there already exists some basic principles that have been empiri-

cally corroborated during last decades. For instance, exact word

matching between query and document is a strong evidence for

relevance, infrequent words or expressions have more weight as

relevance predictors, documents that are clustered together behave

similarly with respect to relevance to information needs (clustering

hypothesis), words that share similar contexts tend to be semanti-

cally related (distributional hypothesis), etc.

In this work we focus on the prediction of document ranking

effectiveness when human assessments are not available. In the
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literature, a common way of tackling this issue is the generation of

pseudo relevance assessments by considering multiple system out-

puts. In general all these methods are based on the Chorus and the

Skimming effects [14], i.e., documents retrieved by many systems

in high positions are likely to be relevant. The predictability of

these methods has been studied from an empirical point of view.

However, their theoretical foundation is still an open issue.

Based on the Observational Information Theory framework [2, 3],

we introduce the Observational Information Linearity (OIL) assump-

tion as a basic principle that explains the effectiveness of IR system

outputs. The model is able to predict effectiveness drop curve along

positions in a single ranking, and the relative effectiveness of two

rankings. Notice that in this basic situation, traditional pseudo as-

sessment methods cannot be applied due to the lack of diverse

rankings. In addition, the formal analysis shows that the proposed

model converges into the traditional pseudo assessment methods

when considering multiple rankings and statistical independence

between them. In our preliminary experiments, the theoretical re-

sults are validated empirically over the GOV2 TREC data set [5].

Let us remark that this work does not attempt to provide better

solutions than those that are presented in previous work; rather we

aim at defining a global theoretical framework on which to base

future improvements.

2 BACKGROUND
The first attempt to estimate ranking effectiveness without human

assessments was proposed by Soboroff et al. [12] taking random

samples from the pool of documents retrieved by the systems being

evaluated. Soboroff et al. found that retaining documents returned

by multiple runs for sampling improves system ranking accuracy.

Wu and Crestani [15] experimented with different variants without

improving substantially the results. Aslam and Savell [4] proposed

comparing the top ranked document overlap peer to peer across

rankings [4]. Spoerri [13] proposed avoiding the system bias by

considering only one run from each research team. Sakai et al. [9]

showed empirically that a simple method based on counting how

many systems retrieve each document performs as well as any other

existing method.

In general, the main conclusion we can infer from the litera-

ture about the generation of pseudo relevance assessments is that,

given a non-biased and representative set of IR systems, the more

a document is highly ranked by different systems, the more it is

likely to be relevant. This is also the basis of unsupervised ranking

fusion methods. In this line, Montague and Aslam [7] reported an

important improvement of unsupervised combined rankings w.r.t.

the most effective single ranking in multiple TREC testbeds. In



addition, the need for avoiding redundant systems has been re-

ported in the context of ranking fusion. For instance, Nuray-Turan

and Can [8] reported effectiveness improvement when selecting

rankings that differ from the majority voting in the ranking fusion

process. Lee [6] and later Vogt and Cottrell [14] found that the best

combinations were between systems that retrieve similar sets of

relevant documents and dissimilar sets of non-relevant documents.

Finally, Amigó et al.[2, 3] introduced the notion of Observational
Information Theory (OIT) framework, which provides a theoretical

foundation for effectiveness metrics and ranking fusion. In this pa-

per, we use the OIT framework in order to predict the effectiveness

of rankings in the absence of human assessments.

3 OBSERVATIONAL INFORMATION
QUANTITY FRAMEWORK

3.1 A Basic Case
A basic principle should behave correctly under basic situations.

Let us consider two rankings r1 and r2 in such a way that both

rank documents correctly, but r1 captures documents from the set

A = {A1,A2, . . .}, while r2 captures documents from both the sets

A and B = {B1,B2, . . .}. Suppose that the relevant documents are

{A1,A2,A3,B1,B2,B3}. Under these conditions, both rankings will

have the following configuration, being r2 more effective:

r1 : A1 A2 A3 A4 A5 A6 A7 A8 . . .

r2 : A1 B1 A2 B2 A3 B3 A4 B4 . . .

Note that top documents are correctly ordered in both rankings.

The difference is that r2 is more diverse, capturing relevant doc-

uments from both A and B sets. The goal consists of predicting

which is the most effective ranking without having any information

about the relevance or the set to which the documents belong.

Sakai and Lin [10] proved that the simplest method of forming

pseudo-rels based on how many systems returned each pooled docu-

ment performs as well as any other existing method (see Section 2).

However, in this basic case, this method would reward r1 given that

common documents (set A) are ranked earlier.

An alternative is using voting or ranking fusion methods to

estimate the relevance of documents. As an example, one of themost

traditional one is the Borda Count algorithm, which assumes in this

scenario that the relevance of a document is inversely correlated

with the average ranking position. Documents from the set B are

located at the bottom of r1. Therefore, the estimated relevance for

these according to Borda count will be low. In consequence, the

Borda count algorithm would reward again r1 instead of r2. This
phenomenon also happens for other voting mechanisms such as

Condorcet Fuse [7] or CombMNZ [11].

Our conclusion is that when a system outperforms another sys-

tem in terms of diversity, the traditional effectiveness prediction

methods do not behave correctly, at least for the basic case of two

rankings. We hypothesize that diversity is an aspect which distin-

guishes systems in terms of effectiveness. Therefore, this situation

is common. Our aim is to instantiate the Observational Information

Theory framework in order to capture these phenomenon.

3.2 Object Observations
The Observational Information Theoretical framework (OIT) [3] is

supported by the idea of modeling the information of observations

rather than objects themselves. In this sense, a document observa-

tion is interpreted as a set of signals, which can beword occurrences,

meta-data, etc. In our case, a document is represented as a set of

relevance signals, i.e., document rankings generated by IR systems.

The main characteristic of OIT regarding the traditional Shannon’s

Information Theory is the ability to consider quantitative features.

Notice that the so called Continuous Entropy or Differential Entropy
models information as a continuous space of events, but objects are

still represented as binary facts (statistical events that either occur

or not). On the other hand, OIT models a discrete space of events

(objects) associated to quantitative features. This is necessary, for

instance, to represent documents as ranking positions returned by

a set of IR systems.

Let D be a collection of documents and Γ a set of relevance

signals {γ : D −→ R+}. The core notion in OIT is the observation,
which is an instantiation of quantitative signals.

Definition 1 (Observation). Given a set of signals, Γ = {γ1, . . . ,γn },
and a set of possible values generated by each signal, {x1, . . . ,xn }, an
observation, OΓ(x1, . . . ,xn ), under Γ is a fuzzy set of signals whose
membership function corresponds with the signal values f (γi ) = xi ,
∀i ∈ {1, . . . ,n}.

As the previous definition shows, in OIT, the observation notion

is independent from the notion of information object. For instance,
a document is an information object, while an observation could

be a set of ranking positions returned by a set of systems. However,

given a set of signals, we can assume that each information object

produces a certain observation.

Definition 2 (Document Observation). An observation OΓ(d)
of d under a set of signals Γ is an observation OΓ(γ1(d), . . . ,γn (d)).

In summary, an observation OΓ(x1, . . . ,xn ) is a fuzzy set of quan-
titative features (e.g., ranking positions) and each document d in

the collection produces an observation OΓ(d) under a set of signals
Γ.

3.3 Observational Information Quantity
The second core notion in OIT is measuring the information pro-

vided by observations. Just like in traditional Information Theory,

the Observational Information Quantity (OIQ) measures informa-

tion in terms of unlikeliness. The particularity is the use of sub-

sumption operators between fuzzy sets.

Definition 3 (Observational InformationQuantity). The
observational Information QuantityIΓ

(
d
)
of a documentd under a set

of signals Γ is the minus logarithm of the probability to be subsumed
by other document observations under the same signal set.

IΓ
(
d
)
= − log

(
Pd ′∈D

(
OΓ(d) ⊆ OΓ(d ′)

) )
.

According to the fuzzy set operators, OIQ can be expressed as

the probability of being outperformed by other document d ′ for all



r1 r2 Doc I{r1,r2 }
(
d
)

Improved by

A1 A1 A1 − log (1/N ) A1

A2 B1 A2 − log (2/N ) A1 , A2

A3 A2 A3 − log (3/N ) A1 , A2 , B3

A4 B2 A4 − log (4/N ) ...

A5 A3 A5 − log (5/N ) ...

A6 B3 A6 − log (6/N ) ...

A7 A4 A7 − log (7/N ) ...

A8 B4 A8 − log (8/N ) ...

... ... B1 − log (2/N ) A1 , B1

B2 − log (4/N ) A1 , A2 , B1 , B2

B3 − log (6/N ) ...

B4 − log (8/N ) ...

Table 1: Exemplification for the OIT computation.

signals simultaneously:
1

IΓ
(
d
)
= − log

(
Pd ′∈D

(∀γ ∈ Γ : γ (d ′) ≥ γ (d)
) )
. (1)

Therefore, being Γ a set of rankings, and N the amount of docu-

ments in the collection, the observational information quantity of

a document d can be estimated as:

IΓ
(
d
)
≃ − log

|{d ′ |∀r ∈ Γ (rank(r ,d ′) ≤ rank(r ,d))}|
N

. (2)

In terms of ranking signals, a high OIQ implies that the document

is unlikely to be outperformed by other documents for every rank-

ings simultaneously. Table 1 exemplifies the computation of OIQ for

the basic case described in the previous section. For instance, accord-

ing to signals r1 and r2, B2 is simultaneously outperformed by four

documents:A1,A2, B1 and itself. Therefore, its corresponding obser-
vational information quantity can be estimated as IΓ

(
B2

)
= log

4

N ,

being N the total amount of documents in the collection.

3.4 Formal Properties
The three most important properties of OIQ are:

Property 1 (Signal Set Monotonicity). OIQ is monotonic
regarding the set of signals:

IΓ∪{γ }
(
d
)
≥ IΓ

(
d
)
.

It can be proved by considering that the more we add elements

in Γ, the lower the probability of unanimous improvement in Equa-

tion 1, increasing OIQ. This means that, the more we have IR sys-

tems (rankings) the more we have information about the relevance

of documents.

Property 2 (Signal Value Monotonicity). OIQ is monotonic
regarding the signal values. Whenever ∀γ ∈ Γ : γ (d) ≥ γ (d ′):

IΓ
(
d
)
≥ IΓ

(
d ′
)
.

That is, the higher the signals are, the less they are likely to be

outperformed, which increases OIQ. In our scenario, this means

that the more a document occurs in high ranking positions, the

more likely to contain relevance information.

1
Note that the inclusion operator in fuzzy sets is equivalent to say that one set outper-

forms another set for every feature simultaneously.

Property 3 (Non bias). OIQ is not affected by redundant signals.
Being f any strict monotonic function:

IΓ∪{γ }
(
d
)
= IΓ∪{γ ,f (γ )}

(
d
)
.

This property is due to the fact that redundant signals do not

affect unanimous outperforming. This property is the main charac-

teristic of OIQ regarding voting mechanisms, avoiding the bias due

to redundant systems. Notice that the distribution of IR approaches

(rankings) depends on the preferences of system developers. How-

ever, the information quantity estimated by OIQ is not affected by

rankings generated according to popular IR strategies.

4 OIQ LINEARITY ASSUMPTION
The main purpose of this paper is to provide a formal explanation

for the accuracy of pseudo relevance assessments in the IR literature.

On the basis of the OIT framework, we define the Observational
Information Linearity (OIL) assumption as:

Definition 4 (Observational Information Linearity (OIL)

Assumption). Given a fixed set of IR signals (rankings), the prob-
ability of a document d to be relevant (rel(d)) is linearly correlated
with its Observational Information Quantity.

P
(
rel(d)

��Γ) ∼ IΓ
(
d
)
.

Note that we are using the symbol ∼ to express linear correlation,

that is, there exists a linear function that relates both components.

The OIL assumption can be also expressed as follows; for each

set of signals Γ, there exists a constant C such that:

∂P
(
rel(d)

��Γ)
∂IΓ

(
d
) = C .

Under this assumption, we cannot predict the relevance of each

specific document in the ranking, given that we do not know a

priori this linear function or the constant C . However, we will see
that it has useful implications when estimating the effectiveness of

rankings in the absence of human assessments.

It is not easy to empirically show that the OIL assumption holds,

as we cannot have sufficient samples of documents for each obser-

vation (i.e., the same ranking position combination across signals)

to check the probability in the left part. However, we can study its

direct implications. In the next subsections, we state propositions

that, according to the OIL assumption, should be true when consid-

ering single, two, and more rankings, respectively. For each case,

we include a small experiment using the Gov-2 collection and the

topics 701 to 750 employed in the TREC 2004 Terabyte Track [5].

4.1 Implications in Single Ranking
Effectiveness

The first implication determines how precision at k for a single

ranking should decrease when increasing k :

Theorem 1 (OIQ Single Ranking Effectiveness). Under the
OIL assumption, given a signal r , the precision at certain ranking
cutoff k is linearly correlated with the expected Observational Infor-
mation Quantity under the own signal r in the first k positions:

P@k(r ) ∼ 1

k

k∑
i=1

log

(
N

i

)
.



Figure 1: Checking the OIQ linearity assumption for single
rankings.

Note that the linearity of the correlation is necessary to obtain

the previous theorem, given that we need to aggregate probabilities

across ranking positions to estimate effectiveness.

In order to check this empirically, we took the 60 official runs

submitted by the participants to the track and computed their P@k

for k ∈ {100, . . . , 1000} averaged across topics. Then we computed

for each system the correlation between P@k and the expected

OIQ score as described in Theorem 1. The reason for considering k
values higher than 100 is the need for a large enough amount of

samples to infer the statistics. The result was that every systems

achieved a Pearson correlation between 0.8 and 0.95.

Figure 1 illustrates the result for six systems. The vertical axis

represents the P@k values. The horizontal axis represenst the ex-

pected OIQ
1

k
∑k
i=1 log

(
N
i

)
. Each line represents a system and its

P@k and expected OIQ achieved across k levels.

Although this experiment is affected by statistical noise, the

figure suggests that there exists already a linear correlation, regard-

less of whether some systems are more effective than others. In

addition, there is a point which is not directly derived from the

OIL assumption: Every series converges to the same point when

minimizing precision. The reason is that, when retrieving all doc-

uments from the collection (extremely high k and low expected

information quantity), every ranking has a precision close to zero.

4.2 Implications when Comparing Two
Rankings

Now, we study the implications of the OIL assumption when esti-

mating the relative effectiveness of two rankings. Grounding on

the OIL assumption, we can theoretically infer that the effective-

ness of each ranking will be correlated with their Observational

Information Quantity of documents at the top positions.

Theorem 2 (OIQ Linearity over Multiple Rankings). Given
a set of rankings, under the OIL assumption, the precision at k of each
ranking r ∈ R is linearly correlated with the expected Observational
Information Quantity under the signal set R of documents above the
k position in r . Formally, being R the set of rankings, and dri the

document at position i in the ranking r :

P@k(r ) ∼ 1

k

k∑
i=1

IR
(
dri

)
.

Let us consider the basic case described in Section 3.1 (see Table

1). The sum of observational information quantities at k = 8 for r1
is:

− log

(
1

N

)
− log

(
2

N

)
− . . . − log

(
8

N

)
which is lower than the sum achieved by r2, that is:

− log

(
1

N

)
−2·log

(
2

N

)
−log

(
3

N

)
−2·log

(
4

N

)
−log

(
6

N

)
−log

(
8

N

)
In other words, while common pseudo assessments rewards r1 (see
Section 3.1), OIQ rewards r2 which captures document from both

sets A and B.

In order to check this theorem empirically, we try to predict the

increase of P@k when comparing two rankings without human

assessments. Using the same data set of the previous experiment

and considering all possible pairs of rankings r1 and r2, for each
ranking pair:

(1) We compute P@100 across all the topics (queries).

(2) As a first baseline, we estimate P@100 under the traditional

pseudo relevance assessment (Sakai et al.’s approach [9]).

That is, for each document dri in the top 100 positions of r ,

the amount of systems (one or both) that retrieve
2 dri .

êff
Pseudo

(r ) = 1

k

k∑
i=1

��{r ∈ {r1, r2} : rank(r ,dri ) ≤ 1000

}�� .
(3) As a second baseline, we take the Borda voting method as

indicator of relevance. That is, the negative average ranking

position of the document across both systems.
3
We consider

the average estimated relevance of documents at k ≤ 100 as

effectiveness prediction for each system.

r̂el{r1,r2 }(d) = − avgr ∈{r1,r2 } rank(r ,d)

êff
Borda

(r ) = 1

100

100∑
i=1

r̂el{R1,R2 }
(
dir

)
.

(4) We compute their estimated effectiveness according to OIT.

That is, the average OIQ score for the first 100 documents

across topics. Formally, being dir the ith document in the

ranking r ∈ {r1, r2}:

êffOIQ(r ) =
1

100

100∑
i=1

I{r1,r2 }
(
dir

)
,

where I{r1,r2 }
(
dir

)
is estimated as in Equation 2 considering

N = 10, 000, 000. Let us remark that in this experiment, we

are considering only the two rankings in Γ.
(5) We compute the correlation across system pairs betwen

the increase of P@100 (△P@100), the increase of êffOIQ(r ),
êff

Pseudo
(r ) and êff

Borda
(r ).

2
Here we consider that a system has retrieved the document if it occurs in the top

1000 positions.

3
When a document is not retrieved by the system we assume a fixed position 1000.



Table 2: Correlation between P@100 improvements across
ranking pairs and different prediction methods, using the
two rankings as reference.

Amount of systems Average position Expected

retrieving the document across rankings OIQ

êff
Pseudo

(r ) êff
Borda

(r ) êffOIQ(r )

-0.38 -0.35 0.44

Figure 2: Checking the OIQ linearity assumption rankings
pairs.

Table 2 shows the results. The expected OIQ-based estimation

(△êffOIQ(r )) achieved a Pearson correlation with the human assess-

ment based estimation (△P@100) of 0.43. Similar to the basic case

described in Section 3.1, the correlation achieved by the Borda-

based approach was negative (-0.35), and the amount of systems

retrieving the document achieves a negative correlation of -0.38.

Figure 2 illustrates the correspondence between the increase of

the expected OIT and P@100. The grey rectangle shows that the

P@100 increase is ensured above a certain OIT estimation difference

(above 0.2). Notice that this value can change depending on the

document collection size N .

4.3 Implications when Comparing Multiple
Rankings

We now consider the situation in which multiple rankings are

compared to each other. Unfortunately, in this case, it is not possible

to estimate OIQ in a frequentist manner. Due to the combinatorial

explosion, most of documents at the top of any ranking tend to be

unanimously improved only by themselves. That is, there is not

enough data to estimate statistics. The common solution for these

situations is assuming independence. In fact, the following theorem

proves that OIQ and traditional pseudo assessments (Sakai et al.’s

approach [9]) tend to convergewhen assuming independence across

rankings.

Theorem 3 (OIQ and Ranking Independence). Being R a set of
rankings, under the OIL assumption, and assuming that rankings are
statistically independent, the Observational Information Quantity of

Table 3: Correlation between P@100 improvements across
ranking pairs and different prediction methods using the
whole set of rankings as reference.

Amount of systems Average position Expected

retrieving the document across rankings OIQ

êff
Pseudo

(r ) êff
Borda

(r ) êffOIQ(r )

0.87 -0.59 0.88

Figure 3: Checking the OIQ linearity assumption for multi-
ple rankings rankings.

a document observation is:

I
(
OR (d)

)
= −

∑
r ∈R

log(rank(r ,d)/N ). (3)

In addition, being |ri | << N

IR
(
d
)
≃ |{r : d ∈ r }|.

That is, assuming that rankings are substantially shorter than

the total amount of documents in the collection, there exists a

convergence between the OIQ of documents and the amount of

rankings returning the documents.

Experiment. In this last experiment, we repeat the previous ex-

periment, but considering the whole set of rankings R as reference

instead of the compared rankings r1 and r2.
Table 3 shows the results. The average position is not a good

estimation of relevance, and OIT under the independence assump-

tion converges to Sakai et al.’s approach [9], but increasing slightly

its predictive power.

Figure 3 shows the correlation between the increase of expected

OIT and △P@100 in this experiment. In this case, the differences

between OIQ (horizontal axis) are much larger than in the previous

experiment. This is the effect of combining multiple signals in the

OIQ estimation.

5 CONCLUSIONS
In this work we have presented a preliminary study about the con-

nection between Observational Information Theory [2, 3] and the

prediction of ranking relevance without human assessments. The

analysis is grounded on the Observational Information Linearity



assumption, which states a correlation between the expected rele-

vance of documents and their observational information quantity in

terms of retrieval signals (rankings). This assumption allows to esti-

mate the behavior of single rankings and the relative effectiveness

of ranking pairs without having human assessments. In addition, it

converges into the traditional pseudo assessment approach when

assuming independence across ranking signals. Future work in-

cludes considering more data sets and more pseudo assessment

approaches.
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APPENDIX: FORMAL PROOFS
Proof. [Theorem 1]

The precision at k metric can be interpreted as the probability of

finding a relevant document above position k . Being rankr (d) the
rank position of d according to the signal r :

P@K(r ) = |{d | rel(d) ∧ rankr (r ) ≤ k}|
k

≃ P
(
rel(d)

�� rankr (d) ≤ k
)
.

This can be written as:

1

k

k∑
i=1

P
(
rel(d)

�� rankr (d) = i ) = k∑
i=1

P
(
rel(d)

�� rankr (d) = i )
k

. (4)

According to the OIL assumption, this equation is linearly correlated

with:

∼
∑

d :rankr (d )≤k

I{r }
(
d
)

k
=

∑
i=1..k

log

(
N
i

)
k

.

□

Proof. [Theorem 2]
Let us consider Equation 4 in the previous proof, the precision at K

for a certain ranking can be expressed as:

k∑
i=1

P
(
rel(d)

�� rankr (d) = i )
k

.

Then, being R a set of rankings, according to the OIL assumption,

this is linearly correlated with:

∼
∑

d :rankr (d )≤k

IR
(
d
)

k
=

k∑
i=1

IR
(
dri

)
k
.

□

Proof. [Theorem 3]
For this proof, we will consider each ranking r as a subset of sorted
documents from D, in such a way that d ∈ r represents that the
document is retrieved in r and |r | corresponds with the ranking

size. We assume that documents out of the ranking achieve a fixed

extremely low r (d).
Being R a set of ranking signals, according to Equation 1, OIQ

can be expressed as:

IR
(
d
)
= − log

(
Pd ′∈D

(∀r ∈ R : r (d ′) ≥ r (d)
) )
.

Assuming statistical independence across rankings, this is equiv-

alent to:

−
∑
r ∈R

log

(
Pd ′∈D

(
r (d ′) ≥ r (d)

) )
≃ −

∑
r ∈R

log(rank(r ,d)/N ),

which corresponds with the first part of the theorem. Now, discard-

ing ranking in which the document does not appear, for which

loд
(
Pd ′∈D

(
r (d ′) ≥ r (d)

) )
= 0,

then the previous equation is equivalent to:

−
∑

r ∈R:d ∈r
log(rank(r ,d)/N ).

Assuming N >> |r | for all r in R, then −loд(rank(r ,d)/N ) is
extremely high for document in the ranking. Therefore,∑

r ∈R:d ∈r
− log(rank(r ,d)/N ) ≃ |{r | d ∈ r }|

as the theorem states.

□
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