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Abstract Although document filtering is simple to define, there is a wide
range of different evaluation measures that have been proposed in the litera-
ture, all of which have been subject to criticism. Our goal is to compare metrics
from a formal point of view, in order to understand whether each metric is
appropriate, why and when, and in order to achieve a better understanding of
the similarities and differences between metrics.

Our formal study leads to a typology of measures for document filter-
ing which is based on (i) a formal constraint that must be satisfied by any
suitable evaluation measure, and (ii) a set of three (mutually exclusive) for-
mal properties which help to understand the fundamental differences between
measures and determining which ones are more appropriate depending on the
application scenario. As far as we know, this is the first in-depth study on
how filtering metrics can be categorized according to their appropriateness for
different scenarios.

Two main findings derive from our study. First, not every measure satisfies
the basic constraint; but problematic measures can be adapted using smooth-
ing techniques that and makes them compliant with the basic constraint while
preserving their original properties.

Our second finding is that all metrics (except one) can be grouped in three
families, each satisfying one out of three formal properties which are mutu-
ally exclusive. In cases where the application scenario is clearly defined, this
classification of metrics should help choosing an adequate evaluation measure.
The exception is the Reliability/Sensitivity metric pair, which does not fit into
any of the three families, but has two valuable empirical properties: it is strict
(i.e. a good result according to reliability/sensitivity ensures a good result ac-
cording to all other metrics) and has more robustness that all other measures
considered in our study.

NLP Group UNED, Madrid, Spain
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1 Introduction

Document Filtering is a generic problem involved in a wide set of tasks such as
spam detection [15], Information Retrieval over user profiles [24], post retrieval
selection for on-line reputation management [3], etc. In essence, document
filtering is a binary classification task with priority (one is the class of interest,
the other is meant to be discarded). It consists of discerning relevant from
irrelevant documents from an input document stream. In spam filtering, for
instance, the system must keep relevant e-mails and discard unwanted mails.

Although document filtering is simple to define, there is a wide range of
different evaluation measures that have been proposed in the literature, all
of which have been subject to criticism. Just as an illustration, TREC (the
Text Retrieval Evaluation Conference) has organized at least three filtering
tasks, all of them using different evaluation metrics: the Filtering track used
utility [26], the Spam track chose Lam% [15], and the legal track employed a
variation of F [23]. In fact, the choice of an appropriate, flawless evaluation
measure seems to be still controversial in many filtering scenarios.

Our goal is to provide a systematic, formal comparison of existing eval-
uation metrics that helps us determine when they are appropriate and why.
Previous comparisons between metrics have focused on issues such as stability
of measures across datasets, ability to discriminate systems with statistical
significance, or sensitivity to small changes in the input. We take a different
approach: we focus on establishing a set of formal constraints [5,17] that define
properties of filtering metrics. Some formal constraints must be satisfied by
any suitable metric, and other constraints help understanding and comparing
metrics according to their properties. A key novelty of our analysis is that it is
grounded on a probabilistic interpretation of measures that facilitates formal
reasoning.

First, we assume one basic constraint that should be satisfied by any evalu-
ation metric, for any filtering scenario. Our analysis shows that many criticisms
to existing metrics can be explained in terms of the (lack of) satisfaction of
this constraint. In particular, some of the most popular measures (such as the
F measure of Precision and Recall for the positive class and Lam%) fail to
satisfy them. However, we also show that redefining measures in probabilis-
tic terms and applying smoothing techniques lead to alternative definitions of
Lam% and F measure that -when the smoothing technique is chosen with care
- have a similar behavior but comply with our basic constraints.

Even measures that satisfy the basic constraint, however, can say differ-
ent things about the comparative performance of systems. Our starting point
to understand their differences is a key empirical observation: in a filtering
dataset [2], measures differ substantially, and the sharpest differences reside
in how they evaluate non-informative outputs (systems whose output is inde-
pendent from the input, such as a system that always returns the same label
for every item). This serves as inspiration to define three mutually-exclusive
properties that depend on how measures handle non-informative outputs. The
three properties, then, define three families of metrics, and provide a clear-cut
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criterion to choose the most adequate measure (or family of measures) for a
given application scenario.

In addition to our formal analysis – and its practical outcomes – we also
report empirical results on (i) the practical effects of our proposed smoothed
measures, (ii) the relative strictness of metrics, and (iii) metric robustness
with respect to variations in the set of test cases. This empirical analysis
complements our formal study and provides deeper insights into the differences
of behavior between metrics.

This paper is structured as follows: in Section 2, we begin with a pre-
liminary experiment on how measures disagree and why. Then in Section 3,
we present our formal analysis of measures. In Section 4 we introduce the
smoothed versions of measures that do not comply with our basic constraints.
Finally, Section 5 presents our empirical analysis, Section 6 discusses related
work and Section 7 summarizes our conclusions.

2 A Preliminary Experiment on How Measures Disagree and Why

In this section we perform a preliminary experiment on how measures disagree
that motivates our study, showing how different the veredict of measures can
be on the same dataset. And, more importantly, it partly suggest how to
differentiate measures and classify them in families, because it shows that
measure disagreement concentrates mainly on non-informative outputs (those
that do not depend on the input).

2.1 Measure Disagreement

Our initial experiment consists of comparing the most popular measures used
in the TREC filtering evaluation campaigns over the WePS-3 dataset (see
Section 4 for a description of each measure, and Section 6.1 for a detailed
description of the WePS-3 task and the dataset). Figure 1 shows the corre-
spondence between measures for systems participating in the WePS-3 evalu-
ation campaign. Each graph compares two standard measures, and each dot
corresponds with a system output for one test case in the collection. In order
to illustrate the behavior of measures under different system outputs for the
same topic, the grey squares represent the outputs for one (randomly selected)
topic.

The graphs clearly illustrate with four examples that, in general, the cor-
relation between measures is lower than expected:

– F measure versus Accuracy. The F measure (harmonic mean of Precision
and Recall for the positive class) seems to be a lower bound on the value
of Accuracy, which can take values arbitrarily larger than the F measure,
but not smaller.
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– F measure versus Utility. This is the only metric pair that has a high cor-
relation in our experiments, and only for values above 0.5. Below 0.5, both
metrics can say radically different things about the quality of a system.

– Utility versus accuracy. Utility also seems to be a lower bound on the
value of accuracy, but beyond that there is little correlation between both
metrics.

– F measure versus Lam%. The patterns in the graph F-measure vs. Lam%
are very particular. As we explain in the next section, the reason is that
Lam% is a measure based on information gain, and it considers the proba-
bilistic dependence between the system output and the gold standard sig-
nals. As a consequence, Lam% assigns a score of 0.5 to any random output.
This explains the vertical line at Lam% 0.5. Also, as we explain in Section
4, it is possible to achieve a maximal Lam% score without predicting the
correct class in most cases, which explains the vertical line at Lam%=1.
Overall, the plot shows little correlation between both measures.

This lack of correlation implies that system ranking can be severely af-
fected by the metric choice. Also, it means that a system development cycle –
where the system is repeatedly tested and improved with respect to a certain
evaluation measure – can be easily biased by the measure selected. Therefore,
it is crucial to understand how and why measures differ, in order to prevent
the use of inadequate measures for a given task and application scenario.

Fig. 1 Correspondence between popular measures in the WEPS-3 evaluation campaign.
Each dot corresponds to a system output for one test case.
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Fig. 2 Correspondence between measure scores for non-informative systems in the WEPS-3
evaluation campaign. Each dot corresponds to a system output for one test case.

2.2 The Role of Non-Informative Outputs

We now select, from the WePS-3 dataset, all the non-informative outputs.
We use non-informative output to refer to those cases where the automatic
classification is statistically independent of the real document classification.
In other words, when there is no correlation between the system output and
the gold standard. For instance, returning the same label for all documents (the
system accepts everything or discards everything) would be a non-informative
output. Also, a system that always picks up a random selection of the input
documents as relevant is also non-informative. The set of WePS-3 systems
includes the baseline systems provided by the organization.

Figure 2 illustrates how the correspondence between measures looks like
when we only display results for non-informative outputs. Comparing both
figures (2 and 1) we see that the scores of non-informative outputs tend to
draw the limits of the dotted areas in Figure 1. In general, this means that
the non-informative outputs include most of the extreme cases of measure
disagreement. Our conclusion is that a key factor of disagreement between
metrics is how non-informative outputs are scored by measures. In other words,
the treatment of non-informative outputs is a strong defining characteristic of
a filtering evaluation measure.

Note that purely non-informative systems are artificial (i.e. simply used as
baselines for comparison purposes). One could argue that it is not crucial how
measures evaluate artificial systems, but only how they evaluate real systems.
And this would be a reasonable objection. However, many real systems may
have a near non-informative behavior. In fact, in the WePS-3 dataset there
are many system outputs which have low informativeness.
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The empirical observation that metrics differ most in how they evaluate
non-informative outputs has served as inspiration for our formal analysis, and
has led to the definition of three mutually exclusive properties of metrics which
produce a classification of measures in three families. Given an application sce-
nario, choosing which property is adequate leads to one of the metric families,
thus guiding the metric selection process.

3 Theoretical Framework

In this section, we formulate the basic constraints (which must be satisfied
by any metric) and properties (which further characterize metrics) that help
assessing filtering evaluation measures. In order to enable our formal analysis,
we first introduce a probabilistic notation to describe measures and measure
properties.

Note that our study focuses only on measures that assess the overall qual-
ity of systems, rather than measures that cover partial quality aspects (such
as False Positive Rate, False Negative Rate, Recall, True Negative Rate, Pre-
cision, Negative Predictive Value, Prediction-conditioned Fallout, Prediction-
conditioned Miss, Rate of Positive Predictions or Rate of Negative Predic-
tions). For instance, Precision and Recall are partial and complementary qual-
ity aspects, and they can be used to assess the overall quality of a system if
they are combined. In this case, the most popular way of combining them is
via a weighted harmonic mean (the F measure).

We also restrict our study to measures that work on binary decisions (rel-
evant vs. irrelevant), rather than on a ranked list of documents. Typically, a
filtering system – as any binary classifier – outputs a probability of relevance
for every item1, and the final classification implies choosing a threshold for
this probability. Then, items above/below the threshold are classified as rele-
vant/irrelevant. One way of evaluating document filtering is by inspecting the
rank of documents (ordered by decreasing probability of relevance) and then
measuring precision and recall at certain points in the rank. The advantage
of this type of evaluation is that the classification algorithm can be evalu-
ated independently from how the threshold is finally set. Some examples of
this type of evaluation are ROC (Receiver Operating Characteristic) [35] and
AUC (Area Under the Curve) [31], which compare the classification perfor-
mance across decreasing classification threshold values. For document filtering
tasks, some researchers also evaluate Precision at a certain number of retrieved
documents [37,11] or average across recall levels [34]. Other related measures
are Mean Cross-entropy [22], Root-mean-squared error, Calibration Error [20],
SAR and Expected Cost (all of them available and described, for instance, in
the R package called ROCR 2). These metrics, however, do not consider the

1 Or, more precisely, a quantity which can be mapped into a probability of relevance using
some growing monotonic function

2 http://cran.r-project.org/web/packages/ROCR/ROCR.pdf
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ability of systems to predict the ratio of relevant documents in the input doc-
ument stream, which is, in practice, a crucial aspect of system quality [38]; a
good ranking may turn into a poor classification if the cutoff point is not cho-
sen adequately. In order to consider this aspect, metrics have to work on the
binary output of the filtering system, rather than on the intermediate internal
rank. Therefore, we restrict ourselves to these kind of metrics.

3.1 The Filtering Task: A Probabilistic Notation

We understand the filtering task as follows. A filtering input consists of a
document 3 set T which contains relevant (subset G) and irrelevant documents
(subset ¬G) 4. G is the subset of documents manually assessed as relevant,
and its complementary ¬G is the subset of documents manually assessed as
irrelevant.

The system output is represented with a subset S containing all documents
labeled as positive by the system. Its complementary set ¬Srepresents docu-
ments labeled as negative by the system. Given an input test set T = G ∪¬G,
a metric returns a certain quality score Q(S) for the system with output set
S.

We will use the simplified notation P (G) to denote the probability P (e ∈ G)
measured over the space of samples T . We use the same notation for any
subset of T . Using this notation we can express quality metrics; for instance,
Precision (fraction of relevant documents in the subset labeled as positive by

the system) is P (G|S), and can be computed as |S∩G||S| . Figure 3 illustrates an

example where G contains four documents and S contains three documents
with the following values for Precision and Recall.

The traditional representation is the contingency matrix, which uses four
subsets: true positives (TP) are items labeled as positive and relevant; false
positives (FN) are items labeled as negative but relevant; true negatives (TN)
are items labeled as negative and irrelevant; and false negatives (FN) are
labeled as negative and irrelevant. Table 3.1 illustrates the correspondence
between our notation and the contingency matrix.

Our notation is not standard, and it does not seem simpler at first sight;
but it is crucial for us to provide formal proofs in the remainder of the paper,
and to propose smoothing mechanisms for the metrics that require it.

Note that neither the contingency matrix nor our probabilistic notation
allow to consider a notion of document redundancy: for instance, the penalty
for discarding a redundant relevant document is the same as the penalty for
discarding a unique relevant document. In this work (as in many other ap-
proaches to the subject) we assume that filtering is a process preliminary to
redundancy removal and is, therefore, evaluated independently.

3 For the sake of readability, we will speak of documents. However, our conclusions can
be applied to any kind of items.

4 Letter G is chosen for Gold standard.
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Fig. 3 Interpretation and notation for the filtering task.

TP = |S ∩ G| ∼ P (G|S)P (S) FP = |S ∩ ¬G| ∼ P (¬G|S)P (S)
FN = |¬S ∩ G| ∼ P (G|¬S)P (¬S) TN = |¬S ∩ ¬G| ∼ P (¬G|¬S)P (¬S)

Table 1 Relationship between the traditional contingency matrix and our probabilistic
notation

The evaluation process requires to estimate some probabilities over observ-
able data. Some of these probabilities are:

– the ratio of relevant documents in the input stream: (P (G) ∼ |G||T | )
– the system output size (P (S) ∼ |S||T | )
– several conditional probabilities such as Precision (P (G|S) ∼ |S∩G|

|S| ) or

Recall (P (S|G) ∼ |S∩G||G| ).

The probabilistic representation allows to define non-informative outputs
S¬i as those whose output set S is chosen independently from their relevance
G:

P (S¬i ∩ G) = P (S¬i)P (G)

The non-informativeness property can be also expressed as:

P (S¬i|G) = P (S¬i) ∨ P (G|S¬i) = P (G)

For the discussions to follow, it is interesting to think of two particular
non-informative outputs. The first one classifies all documents as relevant,
returning the original document set without modifications. We will refer to
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this system as the Placebo baseline (ST = T )5. The second one is the Zero
system, which returns an empty output: S∅ = ∅.

T set of documents
G documents manually assessed as relevant (positive)
¬G documents manually assessed as irrelevant (negative)
S documents labeled relevant by the system
¬S documents labeled as irrelevant by the system
P (G) probability for a document e ∈ T of belonging to the relevant set G

P (G|S) precision (
|S∩G|
|S| )

P (S|G) recall (
|S∩G|
|G| )

S¬i non-informative systems: P (S¬i ∩ G) = P (S¬i)P (G)
ST = T Placebo baseline system (everything is labeled positive)
S∅ = ∅ Zero baseline system (everything is labeled negative)

Table 2 Summary of our notation

Table 3.1 summarizes some useful expressions in our notation.

3.2 The Strict Monotonicity Axiom

Sebastiani [39] proposed a basic axiom as a formal constraint that must be
satisfied by any classification evaluation measure. It states that any relabeling
of an item into its correct category must produce an increase in any appropriate
measure score. Using our notation:

S = S ′ ∪ {e} ∧ e ∈ G ⇒ Q(S) > Q(S ′)

¬S = ¬S ′ ∪ {e} ∧ e ∈ ¬G ⇒ Q(S) > Q(S ′)

This axiom also implies that the maximum score is achieved only when
every item is correctly classified.

Assuming that S and G are two sets, this constraint is closely related to
Tversky’s Monotonicity Axiom for similarity between sets [42]. As Sebastiani
proved, although this intuitive axiom seems obvious, it is not satisfied by some
popular measures, as we discuss in Section 4.

3.3 Measure properties and Use Cases

The previous axiom is a constraint that must be satisfied by any suitable
metric. We now focus on properties, which are structurally similar but are

5 What our definition of the placebo baseline implies is that document filtering is an
asymmetric process in terms of the positive/negative labels. This is implicit in most literature
on the subject: for instance, precision and recall are assumed by default to be computed on
the relevant class.
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intented to characterize how some metrics work (rather than prescribing how
they should work), and help distinguishing measures. Note that the properties
we are about to introduce are mutually exclusive: any metric can satisfy at
most one of them.

In the previous section we have showed how the evaluation of non-informative
outputs is what makes measures different. Therefore, we focus on establishing
properties that describe different ways of handling non-informative outputs.
We exemplify how these properties are useful with a single task in the context
of Online Reputation Monitoring: name ambiguity resolution. Given all the
online posts that contain the name of an entity (e.g. a company) to be mon-
itored, we want to select the texts that do refer to the company, and discard
the texts that refer to something else. For instance, if the entity is the telecom
company Orange, we want to filter out appearances of orange that refer to the
colour, the fruit, etc.

Scenario 1: Absolute gain for single documents classifications. Some-
times, the quality of a non-informative output S¬i depends on the absolute
gain/loss associated with correctly/incorrectly classified elements.
In the name ambiguity task, the system has to assign a positive label to the
items that refer to, for instance, the Orange company. Let us suppose that
the output of the system is used by a competitor that wants to advertise
the advantages of its services to people that are talking about Orange.
For every False Positive, there is a quantifiable loss (in time or money),
as well as for every True Positive there is a quantifiable average gain, etc.
Depending on the relative cost/profit of every incorrect/correct label, a
system that assigns positive labels to all items (what we call a placebo
output ST ) can be better or worse than assuming that nothing is about
the company (zero output (S∅).
According to this, we define the Absolute Weighting property as the ability
of measures to assign an absolute weight to relevant (versus non relevant)
documents in the output regardless of the output size. A measure satisfies
the absolute weighting property if it has a parameter that determines the
relative profit of selecting a relevant document with respect to the cost of
selecting an irrelevant document. Depending on the value of the parameter,
adding together a relevant and an irrelevant document to the positive class
may have an overall positive effect on the measure (the profit is higher
than the cost), or a negative overall effect (the cost of selecting the irrele-
vant document is higher than the benefit of adding the relevant one). We
formalize this property by saying that there exists a threshold value for
the parameter which determines if adding one relevant and one irrelevant
documents to the positive output set S improves the system output or not.
Formally, being:

S ′ ≡ S ∪ {eG ∈ G} ∪ {e¬G ∈ ¬G}6

6 The formula assumes that both eG and e¬G did not already belong to S
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then there exists a parameter c and a threshold θ such that:

c > θ ⇔ Qc(S) > Qc(S ′)

When increasing the size of a non-informative output (|S¬i|), both the
amount of relevant and irrelevant documents labeled as positive grow.
Given that the system is non-informative, the relative growth of relevant
vs. irrelevant documents in the output is fixed, and only depends on the
ratio of relevant documents in the input stream. Therefore, we can express
this property in terms of non-informative output scores: If S¬i and S ′¬i
are two different non-informative outputs, the property requests that there
exists a certain parameter that determines if one non-informative output
is better (when the parameter is above a certain threshold) or worse (when
it is below the threshold) than other:

c > θ ⇔ Qc(S¬i) > Qc(S ′¬i)

Scenario 2: Any non-informative output is equally useless. Let us
now consider a use case in which the system output is used to estimate
how frequently online texts that contain the word Orange refer to the
telecom company and, subsequently, to estimate the online presence of the
company.
In this case, any non-informative output is equally useless, because it will
predict a ratio of relevant documents which is independent from the actual
data. This leads to a Non-Informativeness Fixed Quality property that
we formulate as follows: for any non-informative output S¬i its quality is
constant Q(S¬i)7. That is:

Q(S¬i) = k

We will refer to measures satisfying this property as Informativeness-based
measures.

Scenario 3: Doing nothing is better than doing random.
Finally, let us consider a third scenario in which items labeled as positive
are examined by experts in Public Relations in order to identify and handle
potential reputation alerts. In this scenario, recall is crucial, because the
risk of failing to detect a reputation alert is much worse than having to
examine an irrelevant post.
In these conditions, discarding all documents is catastrophical: the reputa-
tion experts simply cannot do their job. Returning all documents (placebo
baseline), on the other hand, implies a lot of extra work, but it is not nearly
as harmful than the zero baseline. In general, the more the system removes
texts randomly, the more harmful the classifier is.
For these cases we establish a Non-Informativeness Growing Quality prop-
erty: The quality of a non-informative output grows with the size of its
positive class:

7 Note that if the measure also satisfies the monotonicity axiom, this constant will be low
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Axiom Properties

Strict Absolute Non-Inf. Non-inf
Monotonocity Weighting Fixed Growing

Quality Quality
Utility Measures

Acc (weighted) 4 4 7 7
Utility 4 4 7 7

Informativeness Measures
Lam% 7 7 4 7
Odds 7 7 4 7

Phi, MAAC,
4 7 4 7

KapS, Chi, MI
Class-Oriented Measures

F Measure 7 7 7 4

Reliability and Sensitivity
F(R,S) 4 7 7 7

Table 3 Basic constraints, properties and measures.

Q(S¬i) ∼ |S¬i|

Obviously, this property is not compatible with the previous ones.

Note that our three usage scenarios exemplify that a task specification
(name ambiguity resolution in our case) is not enough to select appropriate
evaluation measures; we also need to specify how the output of the system is
going to be used to determine how it should be evaluated.

We now turn to the formal analysis of the most popular filtering met-
rics in terms of the monotonicity constraint and the three mutually exclusive
properties.

4 Formal Analysis of Measures

In this section we present an analytical study of several Filtering evaluation
measures, in terms of how they satisfy the monotonicity axiom and the three
mutually-exclusive properties. The outcome of the formal analysis is summa-
rized in Table 3, and the main points are:

– All metrics in the study, except one (Reliability/Sensitivity), belong to one
of the three families defined by our proposed properties. Therefore, in order
to select an appropriate measure for a given scenario, a crucial step is to
decide how non-informative outputs should be assessed. More specifically,
what is the quality of the zero output (discarding all) with respect to the
placebo output (accepting all). If they are equivalent, we must employ
an informativeness-based measure. If accepting everything is better than
discarding randomly, the best option is employing Precision/Recall on the
positive class. If the answer depends on the relative profit/cost of each



A Comparison of Filtering Evaluation Metrics based on Formal Constraints 13

combination in the contingency matriz, then we should use a Utility-based
measure.

– Some popular measures like Precision and Recall or Lam% fail to satisfy the
basic Strict Monotonocity axiom. We will propose smoothing techniques to
fix these problems in Section 5.

We now discuss the formal properties of each of the metrics analyzed,
grouped according to the properties defined earlier.

4.1 Utility-based Measures

Utility-based measures are those that can be expressed as a linear combination
of the four components in the contingency matrix [26]:

Utilityα1,α2,α3,α4 ≡ α1TP + α2TN − α3FP − α4FN

In other words, there is an absolute reward for each type of correct label-
ing, and an absolute penalty for each type of error. The resulting score can
be scaled according to the size of the positive and negative classes in the
input stream (P (G) and P (¬G)). In our notation, scaled true positives corre-
spond to P (S|G)P (G), true negatives to P (¬S|¬G)P (¬G), false positives to
P (S|¬G)P (¬G) and false negatives to P (¬S|G)P (G).

The Accuracy measure (proportion of correctly classified documents) and
the Error Rate (1-Accuracy) are two particular cases of Utility measures
which reward equally true positives and true negatives. The result is scaled over
the input stream size. Implicitly, accuracy penalizes also the false positive and
false negatives. The Accuracy measure can be expressed in terms of conditional
probabilities:

Acc(S) =
TP + TN

T
' P (S|G)P (G) + P (¬S|¬G)P (¬G)

In [8], a weighted version of Accuracy is proposed:

WAcc(S) =
λTP + TN

λ(TP + FN) + TN + FP
' λP (S|G)P (G) + P (¬S|¬G)P (¬G)

λP (G) + P (¬G)

Basically, Weighted Accuracy is a Utility measure which assigns a relative
weight to true positives and normalizes the score according to the ratio of
relevant documents in the input stream.

The most common Utility version assigns a relative α weight between true
positives and false positives:

Utility(S) = αTP − FP ' αP (S|G)P (G)− P (S|¬G)P (¬G)

A drawback of Utility is that the range of possible scores varies depending
on the size of the dataset. Several normalization methods have been proposed
[26,24]. In general, they consider the maximum score that can be achieved in
each input stream. We do not tackle this issue here.
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4.1.1 Axioms and Properties

With respect to the Strict Monotonocity Axiom, adding an irrelevant docu-
ment to the output S reduces true negatives, and adding a relevant document
increases true positives. Therefore, accuracy satisfies this constraint. A similar
reasoning can be applied to the traditional Utility measure.

The characteristic of Utility-based metrics is that it is possible to assign
an absolute weight to relevant (versus non relevant) documents in the output
regardless of the output size. Thus, they satisfy the Absolute Weighting prop-
erty (see proof in the appendix). But note that, although Accuracy can be
considered a Utility-based measure, it does not directly satisfy the Absolute
Weighting property, given that its definition does not include any parameter.
However, the weighted accuracy proposed in [8] does satisfy this property, and
it is a generalization of Accuracy (see proof in the appendix). In summary,
utility-based measures assign growing or decreasing scores to non-informative
outputs depending on the measure parameterization and the ratio of relevant
documents in input stream (see details in the Proofs appendix).

4.2 Informativeness-Based Measures

This family of measures satisfies the Non-Informativeness Fixed Quality prop-
erty. That is, they score equally any non-informative solution. We first focus on
Lam%, which is possibly the most popular metric in this family in document
filtering scenarios. Then we also analyze other metrics in this family.

Lam% (Logistic average misclassification rate) was defined for the
problem of spam detection as the geometric mean of the odds ratio of misclas-
sified ham, (P (¬S|G)) and ratio of misclassified spam (P (S|¬G)). Maximum
Lam% represents minimum quality:

lam% = logit−1
(
logit(P (¬S|G)) + logit(P (S|¬G))

2

)
logit(x) = log(

x

1− x
) logit−1(x) =

ex

1 + ex

With respect to the Strict Monotonocity Axiom, a well-known problem of
Lam% is that when either P (¬S|G) or P (S|¬G) are zero, lam% is minimal
(i.e. maximal quality) regardless of the other measure component [36]. This
behavior implies that the Strict Monotonocity Axiom is not satisfied by Lam%.

This is a problem that could be fixed with smoothing methods. Consider,
for example, an output with ten positive labels (|S| = 10) that all correspond
to true relevant documents. This can easily be reached in practice by estab-
lishing a very high classification threshold; then the system will retrieve very
few documents, but most likely they will all be relevant, and therefore spam
misclassification (P (S|¬G)) will be zero. But having zero misclassified spam
documents in our data does not imply that the true probability of misclassifi-
cation is zero when we provide a different set of documents to the classifier; it
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only means that it is very low. Therefore, a possible solution is to apply some
smoothing mechanism for the estimation of P (S|¬G). We will tackle this issue
in Section 5.

From the point of view of measure properties, Lam% assigns a fixed score
to every non-informative system output (Lam%(S¬i) = 0.5),and therefore
satisfies the Non-Informativeness Fixed Quality property. The Lam% score for
non-informative outputs is always 0.5 (see Lam% results for non-informative
outputs in Figure 2) – see proof in the appendix.

We have used Lam%, as a representative masure of its family, in the em-
pirical study reported in Section 6. But let us review the formal properties of
other common measures that also assign a fixed value to all non-informative
system outputs.

The Phi correlation coefficient is expressed in terms of false and true
positives and negatives (TP,FP,TN and FN)8:

Phi =
TP × TN − FP × FN√

(TP + FN)× (TN + FP )× (TP + FP )× (TN + FN)

Phi is always zero if S¬i is non informative (see proof in the appendix).
Something similar happens with the odds ratio [28]:

Odds(S¬i) =
TP × TN
FN × FP

which is 1 for every non-informative system output (see proof in the ap-
pendix). As well as the original Lam% measure, the Odds ratio does not satisfy
the Growing Quality constraint: if TN = 0, then the measure is not sensitive
to TP .

The Macro Average Accuracy [33] is a modified Accuracy measure
(MAAc) that also gives the same results for any non-informativeness measure.
It is defined as the arithmetic average of the partial accuracies of each class:

MAAc(S¬i) =
TP

TP+FN + TN
TN+FP

2
=
P (S|G) + P (¬S|¬G)

2

Its value is always 1
2 if the output is non-informative (see proof in the

appendix). Note that, in spite of its name, MAAc is not a utility measure, as
it is not a linear combination of the components of the contingency matrix.

The Kappa statistic [14] is another example of informativeness-based
measure. Kappa is defined as:

KapS(S) =
Accuracy− Random Accuracy

1− Random Accuracy

where the Random Accuracy represents the Accuracy obtained randomly by
an output with size |S|. This measure returns zero for any non-informative
output (see proof in the appendix).

8 For the sake of readability, we use here the traditional notation for the contingency
matrix components.
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Another metric in this family is the Chi square test statistic:

Chi(S) =
(|S ∩ G| × |¬S ∩ ¬G| − |S ∩ ¬G| × |¬S ∩ G|) + |T |

|S|+ |G|+ |¬S|+ |¬G|
=

=
(P (S|G)× P (¬S|¬G)− P (S|¬G)× P (¬S|G)) + 1

2

which returns 1
2 for any non-informative output (see proof in the appendix).

Finally, Mutual Information (MI):

MI(X;Y ) =
∑
y∈Y

∑
x∈X

p(x, y) log
p(x, y)

p(x)p(y)

can be applied to the evaluation of binary classifiers as follows:

MI(S) = P (S ∧ G)log
P (S ∧ G)

P (S)P (G)
+ P (¬S ∧ G)log

P (¬S ∧ G)

P (¬S)P (G)
+

+P (S ∧ ¬G)log
P (S ∧ ¬G)

P (S)P (¬G)
+ P (¬S ∧ ¬G)log

P (¬S ∧ ¬G)

P (¬S)P (¬G)

If an output S¬i is non-informative, every component in the sum is zero
(e.g. P (S¬i)P (G) = P (S¬i ∧ G), and then the log of the fraction is zero)).
Therefore, MI(S¬i) is zero.

4.3 Class-Oriented Measures: Precision and Recall

The third measure family includes those that assume some asymmetry between
classes. These measures are suitable for applications where one class is of
more interest than the other, as is the case of Information Retrieval [41] and
Information Filtering tasks.

The most representative measure in this family is the combination of Preci-
sion and Recall for the relevant class. We will focus here on their combination
via F measure [43], which is a weighted harmonic mean of Precision and Recall,
although the same conclusions are valid for the product [25]. The F measure
is computed as:

Fα(S) =
1

α
P (G|S) + 1−α

P (S|G)

where P (G|S) and P (S|G) are Precision and Recall respectively, in our
probabilistic notation. α is a parameter that sets their relative weight, with
α = 0.5 giving the same weight to both.
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4.3.1 Axioms and Properties

As Sebastiani proved [39], the F measure does not satisfy the Strict Monotonoc-
ity Axiom. The reason is that Precision is not able to distinguish between out-
puts that contain only irrelevant documents: it is zero for any output without
relevant documents. If we take an output without true positives and we cor-
rectly move an item from the set of false positives to the set of true negatives,
F does not improve, because Precision remains zero. In Section 5 we discuss
and propose smoothing methods to address this problem.

The F score is the only measure in our analysis that satisfies the Non-
Informativeness Growing Quality : for any non-informative output, its F score
is higher if it returns a larger set of positive labels (see proof in the appendix).

As we showed in Section 3, this property is not compatible with the other
two properties (Non Informativeness Fixed Quality and Absolute Weighting).

4.4 Reliability and Sensitivity

Reliability and Sensitivity (R and S)[6] is a precision/recall measure pair which
can be used for filtering, ranking and clustering, and also for general document
organization problems that combine these three tasks. It is a generalization of
the BCubed Precision and Recall metrics (used to evaluate Clustering systems)
[5]. Reliability measures to what extent, for a given item, its relationships with
other items predicted by the system do exist in the gold standard. Reversely,
Sensitivity computes to what extent, for a given item, its true relationships
with other items are predicted by the system output. An average over all items
d in the dataset gives BCubed Precision and Recall overall scores.

For every document d, R and S are computed as:

Reliability(d) ≡ Pd′(rg(d, d′)|rs(d, d′))

Sensitivity(d) ≡ Pd′(rs(d, d′)|rg(d, d′))

where rg(d, d
′) and rs(d, d

′) are relationships between d and d′ in the gold-
standard and in the system output, respectively. Pd stands for the Probability
measured on the sample space of all possible documents d.

Two types of binary relationships are considered in the original formula-
tion: priority (item 1 is more relevant than item 2) and relatedness (item 1 and
item 2 are related). The projection of Reliability and Sensitivity to Cluster-
ing uses only relatedness relationships, and is equivalent to BCubed Precision
and Recall. The projections to Ranking and Filtering tasks use only priority
relationships: Ranking obtains priority relationships from (graded) relevance
assessments, and Filtering from the binary classes: items in the positive class
are more relevant than items in the negative class.

In the case of filtering tasks, any positive document has more priority than
any negative document. Therefore Reliability is computed as the probability of
true positives (P (G ∧S)) multiplied by their ratio of correct relationships (i.e.



18 Enrique Amigó, Julio Gonzalo, Felisa Verdejo and Damiano Spina

the probability of irrelevant documents within the discarded set, P (¬G|¬S))
plus the probability of true negatives (P (¬G ∧ ¬S)) multiplied by their cor-
rect relationships (the probability of relevant documents within the accepted
documents, P (G|S)):

Reliability(S) = P (G ∧ S)P (¬G|¬S) + P (¬S ∧ ¬G)P (G|S) =

P (G|S)P (S)P (¬G|¬S) + P (¬G|¬S)P (¬S)P (G|S) =

(P (S) + P (¬S))P (G|S)P (¬G|¬S) = P (G|S)P (¬G|¬S)

which is the product of precisions over both the positive and the negative
classes:

Reliability(S) = PrecisionS × Precision¬S
Replacing S with G, we obtain an analogous result for Sensitivity, which

corresponds to the product of both recalls:

Sensitivity(S) = P (S|G)P (¬S|¬G) = RecallG ×Recall¬G
In the literature, Reliability and Sensitivity are usually combined via the

F measure or weighted harmonic mean F(R,S). F(R,S) has been used in the
context of Online Reputation Management evaluation campaigns [3] to eval-
uate filtering tasks where texts containing the (ambiguous) name of an entity
of interest have to be classified as referring to the entity or not. Remarkably,
it is the only metric in our study that do not belong to any of the three metric
families induced by our proposed mutually-exclusive properties. In Section 6
we will see that, on the other hand, F(R,S) has empirical advantages over the
rest of metrics in our study.

4.4.1 Axioms and Properties

The Strict Monotonicity Axiom is not satisfied by F(R,S), because Reliability
is zero in all cases without true positives. If we move a document from the false
positives to the true negatives, the axiom requires that F(R,S) should increase.
In fact, Precision on the negative class (which is a component of Reliability)
increases; but precision on the positive class remains zero and dominates the
product (Reliability is zero) and the harmonic mean with Sensitivity is also
zero, as is also the case of F(P,R).

Reliability and Sensitivity (combined via F measure) are the only met-
ric pair that does not satisfy any of our mutually-exclusive properties, and
therefore does not fit into any of our metric families:

– Both the zero (everything negative) and placebo (everything positive) out-
puts, which are non-informative, receive the minimal score, because they
are not able to identify any priority relationship. Therefore, F(R,S) does not
satisfy the Non-Informativeness Growing Quality of class-oriented metrics.
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– On the other hand, not every non-informative output receives the same
score. Any random distribution of documents into S and ¬S produces
some correct relationships by chance. Therefore, F(R,S) does not belong
to the class of informativeness-based metrics.

– There is no parameter to define the relative weight of classification deci-
sions, and therefore the metric does not belong to the utility-based family
of measures.

Fig. 4 F(R,S) scores for non-informative outputs. The horizontal axis represents the amount
of randomly selected documents returned by the system output (i.e. labeled as positive). The
vertical axis represents the F(R,S) score. Each curve represents a certain ratio of relevant
documents in the input stream.

Analytically, we can nevertheless say a couple of things about how F(R,S)
handles non-informative outputs:

– Assigning all input documents to the same class (what we call zero and
placebo non-informative baselines) produces a minimum score, given that
at least one of the precision or recall for one of the classes is zero.

– Every non-informative output receives a score below 0.25 (see proof in the
appendix).

Figure 4 illustrates the behavior of F(R,S) for non-informative outputs.
The horizontal axis represents the amount of randomly selected documents
returned (labeled positive) by the system output. The vertical axis represent
the F(R,S) score. Each curve corresponds to a system output which returns a
given ratio of positive labels. As the figure shows, the highest possible value
of F(R,S) is 0.25, when the random assignment gives half of the items to the
positive class.

5 Smoothing Measures

As we have seen in the previous section, F-measure and Lam% fail to satisfy
the Strict Monotonicity axiom. According to our probabilistic interpretation,
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the reason why F-measure and Lam% fail to satisfy the basic constraints is
related to how conditional probabilities are estimated over just a few samples.
For instance, if a system output S contains 10 positive documents (|S| =
10) and they are all irrelevant (|S ∩ G| = 0), then the true probability of
finding a relevant document in the output (P (G|S)) should be some unknown
value, lower than 1

10 , but not necessarily zero. Actually, zero is the less reliable
estimation, because, over a large enough dataset, we will likely find, purely by
chance, at least one relevant document. This reasoning can be applied to other
conditional probabilities implicit in measures such as recall P (S|G) or precision
P (G|S).

In general, we assume that the implicit estimation of conditional probabil-
ities in all measures should be revised when the ratio of relevant documents
( |G||T | ) or positive system outputs ( |S||T | ) is extremely low or high.

We now turn to discuss which is the best way of smoothing F-measure and
Lam% to make them compliant with our formal constraints.

5.1 Laplace’s correction

A popular smoothing mechanism to is Laplace’s correction. Assuming that
all the components in the contingency matrix are equally likely (prior knowl-
edge), this method simply adds one unit per component. Table 5.1 shows how
Laplace’s correction is applied to the contingency matrix.

Relevant docs. Irrelevant docs.
Returned docs |S ∩ G|+ 1 |S ∩ ¬G|+ 1
Returned docs |¬S ∩ G|+ 1 |¬S ∩ ¬G|+ 1

Table 4 Laplace’s correction applied to the contingency matrix

This correction ensures that all matrix components are always larger than
zero. The resulting estimation for Precision (P (G|S)) is:

P (G|S) =
|S ∩ G|+ 1

|S|+ 2

This smoothed F-measure satisfies the Strict Monotonicity Axiom. Unlike
the original, non-smoothed version, now Precision is never zero, and therefore
F can always decrease when adding irrelevant documents to the output.

All metrics considered in our analysis can be smoothed in a similar way.
The smoothed Lam% measure also satisfies the axiom, given that the misclas-
sified relevant P (¬S|G) and the misclassified irrelevant documents P (S|¬G)
are never zero. Therefore, it is necessary to reduce both in order to optimize
the Lam% score. Returning a reduced set of relevant documents is no longer
enough to maximize the score.

A problem of Laplace’s correction is that assuming that all the components
in the contingency matrix are equiprobable may not be a good prior. For
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instance, suppose that relevant documents are extremely unfrequent (e.g. |G| =
1 and |T | = 100000). Then Laplace’s correction assumes that the system is
able to capture the unique relevant document by adding one unit in |S ∩ G| ≡
TP . This assumption leads to an artificial effect of system informativeness: a
smoothed non-informative output becomes an informative output. Therefore,
the properties which are grounded on the behavior of measures over non-
informative outputs are not preserved.

Let us consider the zero output S∅, which is non-informative, to further
illustrate this problem. Its smoothed version P (G|S∅) does not preserve non-
informativeness:

P (G|S∅) =
|S∅ ∩ G|+ 1

|S∅|+ 2
=

1

2
6= P (G)

Recall that non-informative outputs are those for which P (G|S¬i) = P (G).
Let us analyze the consequences of applying this smoothing method to the

F measure. In principle, a class-oriented measure such as F(P,R) prefers non-
informative outputs that discard less documents, and therefore the F score for
ST (Placebo) is always higher than the score for the Zero system S∅. But the
smoothed Precision and Recall for the non-informative outputs ST (Placebo)
and Zero system are:

RecallSmooth(S∅) =
TP + 1

TP + 1 + FN + 1
=

|S∅ ∩ G|+ 1

|S∅ ∩ G|+ 1 + |¬S∅ ∩ G|+ 1
=

|∅ ∩ G|+ 1

|∅ ∩ G|+ 1 + |T ∩ G|+ 1
=

1

|G|+ 2

RecallSmooth(ST ) =
TP + 1

TP + 1 + FN + 1
=

|T ∩ G|+ 1

|T ∩ G|+ 1 + |∅ ∩ G|+ 1
=
|G|+ 1

|G|+ 2

PrecisionSmooth(S∅) =
TP + 1

TP + 1 + FP + 1
=

|S∅ ∩ G|+ 1

|S∅ ∩ G|+ 1 + |S∅ ∩ ¬G|+ 1
=

1

2

PrecisionSmooth(ST ) =
TP + 1

TP + 1 + FP + 1
=

|T ∩ G|+ 1

|T ∩ G|+ 1 + |T ∩ ¬G|+ 1
=
|G|+ 1

|T |+ 2

Therefore, the smoothed Recall is still higher in the Placebo output (ST )
than in the Zero output:

|G|+ 1

|G|+ 2
>

1

|G|+ 2

However, if |G| < |T |
2 then the precision for the Zero output is higher:

|G| < |T |
2

=⇒ |G| < |T |+ 2

2
− 1 =⇒ |G|+ 1

|T |+ 2
<

1

2

Therefore, depending on the relative weight of Precision in F (α value),
the zero system S∅ can outperform the Placebo system ST and the Non-
Informativeness Growing Quality property is not preserved.
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A similar problem occurs when we apply Laplace’s correction over the
Lam% measure. Adding one element to each component in the contingency
matrix may transform a non-informative output into an informative output,
achieving a Lam% score different than the constant value that any non-informative
output should achieve (0.5). Therefore, the non-informativeness fixed quality
property that characterizes Lam% is not preserved.

5.2 Non-Informative Smoothing

In order to comply with the strict monotonicity axiom while preserving the
other properties of metrics, we propose to assume non-informativeness as prior
knowledge. We will use it here to modify Laplace’s correction, but the same
reasoning can be applied to other smoothing techniques [1].

Non-informativeness implies that the discrete variables (or sets) S and G
are independent of each other. Therefore we can add the joint probability to
each matrix component in this way:

Relevant docs. Irrelevant docs.
Returned docs |S ∩ G|+ P (G)P (S) |S ∩ ¬G|+ P (¬G)P (S)
Returned docs |¬S ∩ G|+ P (G)P (¬S) |¬S ∩ ¬G|+ P (¬G)P (¬S)

The resulting computation for Precision P (G|S) is:

P (G|S) =
|S ∩ G|+ P (G)P (S)

|S|+ P (S)

P (G) represents the prior knowledge about P (G|S). That is, a priori, the
system is non-informative and the ratio of relevant documents in the output
corresponds to the ratio of relevant documents in the input stream. On the
other hand, P (S) represents the weight assigned to the prior knowledge. As-
signing the same weight to the prior knowledge as Laplace’s correction, we
obtain:

P (S|G) =
|S ∩ G|+ 2P (G)

|S|+ 2

Note that this value is equivalent to Laplace’s correction when P (G) = 1
2 ,

slightly larger if P (G) grows, an slightly lower if P (G) is lower than 1
2 .

Now, given a non-informative system S¬i, we have the following smoothed
conditional probability estimation, which preserves the nature of a non-informative
output:

P (G|S¬i) =
|S¬i ∩ G|+ 2P (G)

|S¬i|+ 2
=
|T |P (S¬i)P (G) + 2P (G)

|S¬i|+ 2
=

=
P (G)(|T |P (S¬i) + 2)

|S¬i|+ 2
=
P (G)(|S¬i|+ 2)

|S¬i|+ 2
= P (G)
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Axiom Properties

Strict Absolute Non-Inf. Non-inf
Monotonicity Weighting Fixed Growing

Quality Quality
Utility Measures

Weighted Accuracy 4 4 7 7
Utility 4 4 7 7

Informativeness Measures
Lam% 7 7 4 7
Odds 7 7 4 7

Lam%smL 4 7 7 7
OddssmL 4 7 7 7

Lam%smN 4 7 4 7
OddssmN 4 7 4 7

Phi, MAAC,
4 7 4 7

KapS, Chi, MI
Class-Oriented Measures

F Measure 7 7 7 4

FsmL 4 7 7 7

FsmN 4 7 7 4

Fig. 5 Basic constraints, properties and measures

Therefore, the condition P (G|S¬i) = P (G) is preserved and the measure
properties are not affected.

We apply the same procedure to all the conditional probabilities:

P (S|G) =
|S ∩ G|+ 2P (S)

|G|+ 2
= 1− P (¬S|G)

P (S|¬G) =
|S ∩ ¬G|+ 2P (S)

|¬G|+ 2
= 1− P (¬S|¬G)

P (G|S) =
|S ∩ G|+ 2P (G)

|S|+ 2
= 1− P (¬G|S)

P (G|¬S) =
|¬S ∩ G|+ 2P (G)

|¬S|+ 2
= 1− P (¬G|¬S)

The non-informative smoothed versions (i.e. Fsm¬i
or Lam%sm¬i

) are com-
puted in the same way as the original measures, but using the informativeness-
based smoothing procedure when estimating the previous conditional proba-
bilities.

Figure 5 shows the properties and constraints satisfied by measures and
their smoothed versions. The Laplace smoothed version is represented by the
subindex XsmL. The subindex XsmN represents the informativeness-based
smoothing. As the table shows, Laplace’s smoothing fixes compliance with
the basic axiom, but at the cost of breaking the natural properties of mea-
sures. Informativeness-based smoothing also makes measures compliant with
monotonicity, but also preserves the way they handle non-informative outputs.
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In conclusion, if we expect very large or very small sets of positive docu-
ments in the system output, or a very large fraction of relevant documents in
the dataset, we need to apply a smoothing method to preserve strict mono-
tonicity, and we can apply our informativeness-based smoothing in order to
preserve the original properties of metrics.

6 Experiments

In addition to the formal analysis, which is the primary contribution of our
work, we want to further characterize and compare the behavior of metrics em-
pirically. First of all, we want to study the empirical behavior of the smoothed
versions of the F-measure and Lam% that we have proposed purely on formal
arguments. Then we will compare measures in terms of their strictness, their
robustness across data sets, and in terms of how they rank systems.

6.1 Experimental setting

For our experiments, we have employed the evaluation corpus and system
results from the second task in the WePS3 competition, Online Reputation
Management [2]. Given a company name and a stream of tweets containing the
name, the task consisted of classifying Twitter entries [29] as relevant (related)
when they refer to a certain company and irrelevant (unrelated) otherwise.

The test set includes tweets for 47 companies and the training set comprises
52 company names. For each company, around 400 tweets were retrieved using
the company name as query. The training and test corpora were crowdsourced
using Mechanical Turk [30] using five annotations per tweet with reasonable
inter-annotator agreement rates. The ratio of related tweets per company name
varies widely across companies, which suits our purposes well. The statistics
are described in [2]. We will refer to each test case (tweets for a company)
as an input stream or topic. Five research teams participated in the compe-
tition, and sixteen runs were evaluated. The organizers included two naive
baseline systems: the placebo system (all tweets are about the company) and
its opposite (no tweet is about the company).

6.2 The Effect of Smoothing

We want to investigate empirically what is the effect of applying non-informative
smoothing to the evaluation measures, and how it compares to the standard
Laplace’s correction.

Figure 6 shows the relationship between smoothed and non-smoothed mea-
sures. We have inverted the Lam% values (i.e. we use 1-Lam%) for an easier
interpretation of the graph. In the case of Utility, we have used its normalized
version [26,24] in order to have comparable results across test cases. Each dot
represents a single system output for a single test case (a company name).
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Fig. 6 The effect of smoothing Accuracy, Utility, F measure and Lam% using the
informativeness-based correction. Each dot corresponds to a system output for one test
case (one company name).

The horizontal axis represents the original measures and the vertical axis rep-
resent the smoothed versions using the Laplace’s technique. Note that we can
apply the smoothing procedure to any measure which is computed from the
contingency matrix, including Accuracy or Utility.

in the case of Utility-based metrics (Accuracy and Utility in the figure),
the smoothing has little practical impact. Accuracy, in fact, does not change
for any system output. In the case of Utility, there are only a few cases where
smoothed utility gives a slightly lower score. The reason is that the probabili-
ties are not computed over single classes, and therefore the imbalances in the
data do not have a significant effect on the probability computation.

With respect to the F measure, the overall effect is similar to Utility: in
just a few cases, the smoothed version gives a slightly lower score. The only
exception is the dot marked as C, where the smoothed version is around 10%
lower than the original F score.

The sharpest difference occurs in the case of Lam%. In general, the cor-
relation is almost perfect; but in the extreme values of Lam% the situation
changes drastically. When Lam%=1 (region B in the figure), its smoothed ver-
sion can be anywhere from 1 to near 0.5 (which is the score for non-informative
outputs). Recall that Lam% overscores system outputs without misclassified
irrelevant documents P (S|¬G) = 0 even if not all relevant documents appear
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Fig. 7 The effect of smoothing Reliability and Sensitivity (F(R,S)) using the informa-
tiveness based correction. Each dot corresponds to a system output for one test case (one
company name).

in the output. The smoothed version solves this, and therefore some outputs
that receive a high Lam% score are penalized by the smoothed version. Re-
versely, when Lam%=0 (region A in the figure) the smoothed version can be
anywhere from 0.1 to almost 0.5.

Figure 7 shows that Reliability and Sensitivity also modify their behavior
when smoothed. Although the correlation is in general almost perfect, outputs
with a perfect F(R,S) score can now receive values from 1 to almost 0.3.

Fig. 8 Laplace’s correction versus informativeness-based correction for F measure and
Lam%

Figure 8 compares the use of Laplace’s correction with our informativeness-
based correction. In the case of F measure, the overall correlation between
both methods is high, but some outputs are penalized by the informativeness-
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based correction (for instance dots A and B in the figure). In these cases,
the system returns only a few documents (|S| << |T |), and there are only
a few relevant documents in the dataset (|G| << |T |). Therefore, Laplace’s
correction overscores the output by adding one element in the true positive
component of the contingency matrix. The informativeness-based correction
takes into account the ratio of relevant documents in the input stream, and
prevents such overscoring.

The sharpest differences between both corrections appear in the case of
Lam%. In some cases, the informativeness-based correction rewards systems:
for instance, if there is a large amount of relevant documents in the input
stream (|G| T ) and the output size is low (|S| << |T |), the informativeness-
based correction assumes less misclassifications than Laplace’s correction (e.g.
dot C in the figure). On the other hand, if there are no relevant documents
in the small positive output and the ratio of relevant documents is low, then
the informativeness-based correction assumes more misclassifications than the
original Laplace correction (dots D in the figure). In this cases, the informativeness-
based correction penalizes more than the Laplace correction.

Overall, our recommendation is to use non-informative smoothing in cases
where the classes in the test cases are highly imbalanced, to prevent the few
cases where metrics can overestimate or understimate errors.

6.3 Strictness

In this section we follow the definition and estimation of strictness given by
Amig et al. [6]. Given a set of measures, one of them is stricter if it is a lower
bound on the quality assessments of the other measures; in other words, if it
penalizes systems for all flaws detected by the other measures. Consider, for
instance, Accuracy and Lam%. Depending on the dataset, sometimes a high
Accuracy score can be achieved just by assigning every sample to the most
frequent class. Informativeness-oriented measures such as Lam%, on the other
hand, penalize such strategy. Reversely, high Lam% scores can be achieved by
minimizing the false negative or the false positive sets; for instance, returning
only a few high-confidence samples as positive (see Section 4.2). With respect
to this strategy, Accuracy would be stricter, as it penalizes such behavior.
A measure is stricter than Accuracy and Lam% if it penalizes both types of
wrong system behavior.

Within our set of measures, we say that a measure is strict if it penalizes
anything that at least other (reasonable) metric penalizes. The effect is that
a high score with a strict measure implies a high score according to the rest
of measures is achieved.

Strictness means that a highly ranked output according to the metric is
highly ranked according to any other measure. Following [6], in order to com-
pute the strictness of the metric m with respect to another metric m′, we
(i) rank all outputs from all topics according to m and m′. (ii) Then, we select
the top outputs according to the measure m. (iii) We consider the lowest rank-
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Fig. 9 Strictness of measures computed using the top n% system outputs in the ranking
produced by each measure.

ing position according to the other metric m′ within these outputs. (iv) The
global strictness of each measure is the minimum strictness with respect to all
the other of metrics. Formally, being O the set of outputs in all topics and
being rank(m, o) the ranking position of the output o regarding the measure
m:

rank(m, o) = Po′∈O(m(o) ≥ m(o′))

That is, the top, middle and bottom ranks are 1, 0.5 and 0 respectively. The
set of top ranked outputs according to m is:

top(m, th) = {o ∈ O|rank(m, o) ≥ th}

The strictness of m with respect to other metric m′ is:

Strictnessth(m,m′) = mino∈top(m,th)(rank(m′, o)))

and the overall strictness of m given a metric set M is:

Strictness(m) = minm′∈M(Strictness(m,m′))

Figure 9 shows the results. Each curve represents the strictness of a metric
computed using the top n% values of each system output. We have considered
informativeness-based smoothing variants. As the figure shows, R and S are
substantially stricter than other metrics above 80% of the top ranked outputs.
This means that the minimum ranking position for these outputs according
to other metrics is higher than in the case of the other metrics. The second
strictest metric is Lam%, which belongs to the informativeness-based measure
family. Note that when the input stream is not well balanced, then the F
measure and utility based metrics overscore non-informative outputs, which
makes them less strict than R, S and Lam%.
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Fig. 10 F(R,S) values for every (topic,system) pair compared to other metrics.

In order to better understand the strictness of R, S with respect to the
other metric, in Figure 10 we have compared Reliability and Sensitivity values
(combined with the F measure) with the values of other salient measures.
Each dot represents a system output, and all outputs from all systems in
the dataset have been considered9. Note that F(R,S) is strictly lower than
smoothed Lam%, accuracy and F(P,R) for virtually every system and every
test case in the dataset. Only in the case of utility there is an exception in the
area of low F(R,S) values (0-0.4), where there seems to be little correlation
between both metrics.

We can provide an analytical explanation for the behavior of F (R,S) with
respect to the other metrics. First, a low precision or recall in the positive
class directly implies a low R and S:

P (S|G) << 1 =⇒ P (S|G)P (¬S|¬G) << 1 =⇒ F (R,S) << 1

If the output is non-informative (and then Lam% is low, as well as any
other measure in its family), then we cannot have a high precision and recall
of discriminative relationships. For instance, Lam% is grounded on the ratio
of misclassified documents P (S|¬G) and P (¬S|G). Then:

P (¬S|G) >> 0 =⇒ P (S|G) << 1 =⇒ F (R,S) << 1

And finally, if most documents are false positives or false negatives (which
implies a low Accuracy or Utility) then the ratio of correct relationships from
all documents necessarily decreases:

9 For easier comparison, the lam% scale has been reversed from 0 to 1
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Fig. 11 Robustness of measures.

TP + TN << T =⇒ P (S|G)P (G) + P (¬S|¬G)P (¬G) << 1 =⇒

(P (G) << 1 ∧ P (¬S|¬G) << 1) ∨ (P (¬G) << 1 ∧ P (S|G) << 1) =⇒

P (S|G) << 1 ∨ P (¬S|¬G) << 1 =⇒ F (R,S) << 1

Given the low correlation between filtering measures, strictness can some-
times be a highly desirable property. If a task / test collection does not pre-
scribe how the output of the filtering system is going to be used, obtaining
a high value with a strict metric guarantees that the system can be used in
different usage scenarios.

6.4 Robustness Across Data Sets

The robustness of a metric is its ability to return consistent results across
different data sets. In combination with other metric properties, it can be a
valuable property, because it contributes to the predictive power of an exper-
imental outcome.

Our last experiment is an empirical assessment of the robustness of mea-
sures across datasets/test cases. As we discuss in Section 7, there are many
ways to meta-evaluate measures according to its robustness: for instance, ro-
bustness to noise, analysis of variance (ANOVA), consistency or discriminacy.
Here we follow the meta-evaluation criterion of Amig et al. [6], which consists
of measuring the correlation of measure system rankings across topics.
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For this, we compute the Spearman correlation10 between system rankings
obtained over 1,000 pairs of randomly selected topics. Being Qm(o, t) the score
according to the measure m for the output o in the topic t:

Robustness(m) = corro∈O(Qm(o, t), Qm(o, t′))

The results are shown in Figure 11. The most remarkable result is the large
difference between the robustness of F(R,S) (Reliability/Sensitivity) with re-
spect to the rest of measures. Utility-based measures have low robustness,
because they are very sensitive to the characteristics of the dataset (in par-
ticular, to the ratio of relevant documents in the input). And class-oriented
measures (F measure) tend to be more robust than the informativeness-based
measure Lam%.

With respect to the effect of the smoothing techniques, there seems to be
no consistent improvement with respect to the original measures.

6.5 Ranking systems

Finally, we compare the system scores for each of the metrics,in order to illus-
trate how a set of systems can be ranked in an evaluation campaign. Table 12
shows all the runs in the WEPS-3 evaluation campaign ranked by Reliability
and Sensitivity. Measures from other families are also included in the table.
We have included a Random baseline system which assigns randomly half of
the documents to the positive class.

All measures agree on which is the best system (LSIR.EPFL 1). Beyond
that, the correspondence between rankings is lower than would be expected
for metrics which have the same purpose. For instance, the Pearson correlation
between the F measure and the Accuracy rankings is 0.5. The reason is that,
by definition, class-oriented metrics penalize systems that are close to the zero
output. For instance, SINAI 1 achieves a high accuracy but a low F measure.

An interesting question is which systems are better than a non-informative
output. For each metric (column), figures in boldface are the scores that
improve all non-informative baselines for that metric. According to the F
measure over Precision and Recall, there is only one system that improves
the upper bound of non-informative outputs. In other words, if we consider
that the quality of a non-informative output is correlated with its size (Non-
informativeness growing property) then most systems do not improve the
Placebo baseline. According to Lam%, most systems improve the fixed score
for non-informative outputs (0.5). Therefore, if we consider that any non-
informative output is equally useless, then all systems represent an improve-
ment over non-informative baselines. According to Accuracy, some systems
improve the non-informative outputs and some systems do not. Therefore,
if we consider that any correct classification decision is equally important

10 Initially we applied the Pearson coefficient. However, the results were not consistent,
due to scaling issues (non-linear correlations).
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System Accuracy Utility Lam% smoothed Lam% F smoothed F smoothed F(R,S)
LSIR.EPFL 1 0.83 0.64 0.71 0.72 0.63 0.63 0.25
ITC-UT 1 0.75 0.52 0.63 0.64 0.49 0.49 0.2
ITC-UT 3 0.67 0.41 0.6 0.61 0.41 0.4 0.18
UVA 1 0.56 0.22 0.54 0.53 0.36 0.36 0.17
random 0.5 0.21 0.46 0.49 0.38 0.38 0.15

KALMAR 4 0.46 0.34 0.57 0.56 0.46 0.46 0.15
ITC-UT 2 0.73 0.53 0.64 0.63 0.51 0.51 0.15
ITC-UT 4 0.64 0.42 0.61 0.6 0.43 0.42 0.14

KALMAR 5 0.44 0.35 0.58 0.56 0.47 0.47 0.13
KALMAR 2 0.44 0.29 0.55 0.54 0.43 0.43 0.13
KALMAR 3 0.4 0.26 0.56 0.55 0.39 0.39 0.12
SINAI 1 0.63 0.37 0.64 0.64 0.29 0.29 0.11

KALMAR 1 0.48 0.31 0.56 0.52 0.42 0.42 0.1
SINAI 3 0.46 0.31 0.5 0.5 0.36 0.36 0
SINAI 5 0.51 0.32 0.5 0.5 0.28 0.28 0
SINAI 4 0.61 0.3 0.5 0.5 0.17 0.17 0
SINAI 2 0.56 0.19 0.5 0.5 0 0 0

zero output 0.57 0.19 0.5 0.5 0 0 0
placebo 0.43 0.4 0.5 0.5 0.53 0.53 0

Fig. 12 Systems in WEPS-3 evaluation campaign ranked by smoothed F(R,S). For each
column, figures in boldface are results that improve all non-informative baselines (random,
placebo, zero output)

(Accuracy) some approaches are better than non-informative outputs. Our
conclusion is that measures are complementary, and that understanding the
assumptions of each measure is crucial to interpret their results.

6.6 Wrap up

The outcome of our experiments provides two practical consequences on the
use of filtering evaluation measures: (i) although smoothed versions are highly
correlated with the original measures, using them avoids potential over and
underestimations of the quality of systems in cases where the classes are highly
imbalanced; and (ii) Reliability and Sensitivity is the metric pair with the
highest strictness and robustness of all measures considered. Therefore, if a
use case does not clearly point to one of the three measure families (or if
the output of the filtering system is going to be used in multiple scenarios),
Reliability/Sensitivity should be the preferred metric. In any case, studying
the results of different metrics provides additional insights into the behavior
of systems.

7 Related Work

In this section, we first review related work on meta-evaluating classification
measures, and then we also briefly review related work on meta-evaluation
based on formal constraints for other tasks.
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7.1 Measure analysis for binary classification problems

7.1.1 Sebastiani’s Axioms

Possibly, Sebastiani’s work [39] is the closest in spirit to our analysis. The
author proposed a set of basic axioms to be satisfied by measures. The first
one is the Strict Monotonicity axiom, which is considered in our work as the
main basic constraint for measures. Sebastiani proved that the traditional
F measure (on Precision and Recall) does not satisfy this. In this case, our
contribution builds on this analysis, and proposes a technique that leads to a
smoothed version of the F measure that satisfies the monotonicity axiom and,
at the same time, preserves its other analytical properties.

His second axiom, (Continuous Differentiability), states that the evaluation
measure must be continuous and differentiable over the true positive and true
negative. We did not consider this aspect in our study. However, according to
the author, measures fail to satisfy it for the case of zero values in the con-
tingency matrix. Something similar happens with the third and fourth axioms
Strong Definiteness and Weak Definiteness, which state that the measures
must be defined for any gold standard or system output. The four axioms are
satisfied by the F measure when interpreting it in probabilistic terms and ap-
plying smoothing techniques. Apart from this, we can consider that the third
and four constraints are inferred from the Strict Monotonicity axiom. Notice
that the axiom states a comparison of scores which must be definable for every
system output and gold standard.

The fifth axiom sets a restriction about the measure value range. We did
not cover this aspect of measures in our work, given that we focus on the
intrinsic measure properties rather than on scale aspects. Interestingly, the
sixth and seventh axioms proposed by Sebastiani are equivalent to our Non-
Informativeness Fixed Quality property. That is, a random or trivial classifier
must achieve the same score regardless the gold standard. As we have ar-
gumented, we do not think this is a basic axiom (something that all filtering
metrics should hold), but a property that helps characterizing a family of met-
rics. For instance, in the case where the positive class is going to be inspected
by online reputation experts, the (non-informative) option of labeling every-
thing as positive is much harmless than the (equally non-informative) option
of labeling everything as negative: in the first case, the result is a substantial
increase in the manpower needed to examine the positive class; but, in the
second case, performing the reputation analysis simply becomes impossible.

7.1.2 Sensitivity and Robustness

One criterion to compare evaluation measures is sensitivity in Analysis of
Variance [9]. Along this line, Ling presented a rigorous definition of con-
sistency and discriminacy [31]. These meta-evaluation criteria focus on the
ability to capture slight differences between classifiers. In [21], measures are
meta-evaluated in terms of robustness with respect to noise in system outputs



34 Enrique Amigó, Julio Gonzalo, Felisa Verdejo and Damiano Spina

(which is introduced artificially in their experimentation). In general, all these
meta-evaluation criteria are oriented to the statistical consistence of evalua-
tion measures. In contrast, our approach focuses on clarifying their analytical
behavior and their underlying assumptions.

7.1.3 Grouping Measures by Correlation to each other

Other studies categorize measures empirically by computing their mutual cor-
relation [21,12]. An interesting result is that, in general, measures tend to be
less correlated to each other in imbalanced data sets. This observation high-
lights the importance of selecting an appropriate measure when the ratio of
relevant documents (P (G) in our notation) varies across test cases.

7.1.4 Ferri’s Measure Categorization

Ferri et al. [21] grouped classification evaluation measures in three categories.
First, some measures are based on how well the system ranks the samples (e.g
ROC or AUC). We have excluded them from our study, as we focused on the
evaluation of binary, discrete classification outputs, where the system must pre-
dict the optimal classification threshold. Ferri et al. distinguish between proba-
bilistic measures and measures based on a qualitative understanding of errors.
The probabilistic measures consider the deviation from the true probability
of errors. These measures are closely related to our family of informativeness-
based measures. The qualitative measures include both Utility based metrics
and class-oriented measures. Unlike in our study, Ferri et al. do not provide a
formal distinction between measure families.

7.1.5 Caruana’s Measure Categorization

In [12] another measure categorization is proposed. One family is ”threshold
measures”, which groups all our three measure families, and the other two
sets compare the system versus the reference ranking and therefore, they are
excluded from our study. Therefore, our work can be seen as a formal investi-
gation of the subfamilies in the first group proposed by [12].

7.1.6 Solokova’s Invariance Properties

Solokova proposed a formal categorization of threshold measures [40]. She
focused on the invariance of measures under a change in the contingency matrix
(true positive, false positive, etc.). These properties are:

– Invariance under the exchange of true positive (TP ) with true negative
(TN) and false negative (FN) with false positive (FP ). Absolute weighting
based measures are invariant under certain weighting schemes. Measures
from the other two families are in general non invariant.
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– Invariance under the change in TN when all other matrix entries re-
main the same. According to the authors, all the precision/recall based
measures are invariant under the change of TN . This property charac-
terizes the class-oriented measure family. This is closely related to our
Non-Informativeness Growing Quality property. Intuitively, changing the
size of a non-informative output |S¬i| produces a trade-off between com-
ponents in the contingency matrix. If the measure is not sensitive to one
of the components, then increasing the non-informative output size can be
always beneficial.

– Invariance under the change in FP when all other matrix entries remain
the same. The non-invariance is necessary if the measure satisfies the Strict
Monotonicity axiom.

– Invariance under the classification scaling:

TP ⇒ k1TP TN ⇒ k2TN

FP ⇒ k1FP FN ⇒ k2FN

where k1, k2 > 0. This invariance does not hold for any of our measure
families. In fact, according to the author, this invariance is only satisfied
by Precision (P (G|S)), which is a partial measure that does not satisfy the
Strict Monotonicity axiom.

7.1.7 Wrap Up

In short, there exists in the state of the art a clear distinction between thresh-
old measures for discrete binary outputs versus ranking evaluation measures.
The Utility and Accuracy measures have been distinguished from other binary
measures, but not formally. There exists an informal category based on infor-
mativeness (probabilistic measures). And there exists also an indirect property
that discriminate class-oriented measures (invariance over changes in TN).

The main contribution of our analysis with respect to the state of the art
is to establish a framework, based on the concept of informativeness, which
formally distinguishes three families of measures and clarifies the basic assump-
tions that define each measure set. A strength of our categorization scheme
is that how measures evaluate non informative outputs determines measure
disagreement as well as measure families.

7.2 Formal constraints for information access problems

Formal constraints as a tool to analyze and categorize evaluation metrics have
previously been used in other information access problems: [5] proposed four
constraints for extrinsic clustering evaluation measures, which are only satis-
fied by the Bcubed precision & recall metric pair. [6] postulates five constraints
for document retrieval evaluation measures which no metric in the state of the
art satisfies, and propose a new metric pair, Reliability and Sensitivity, which
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comply with all constraints and can also be applied to tasks that mix retrieval,
clustering and filtering aspects. [10] also introduces a wide range of constraints
that cover many aspects of the document retrieval problem, in an attempt to
characterize document retrieval evaluation measures. [7] proposes a measure
to evaluate search results diversification (Rank-Biased Utility), designed to
comply with a set of formal constraints for the problem of search with diver-
sity. The metric takes into account redudancy and user effort associated to the
inspection of documents in the ranking.

Besides the analysis of evaluation measures, formal constraints have also
been used to analyze and improve document retrieval models11. For instance,
[17] is a seminal work that postulates a number of constraints on tf*idf weights,
which lead to a reformulation of some popular weighting schemes – such as
okapi weighting – that result in better document retrieval effectiveness; [32]
proposes two constraints to lower-bound term frequency normalization; [18,16]
introduce formal constraints to model semantic term matching and query ex-
pansion; [13] propose a constraint on document frequency for pseudo-relevance
feedback models; and [27] introduces formal constraints to model translation
estimations for document retrieval based on statistical translation models. Re-
cently, a SIGIR workshop on the topic (Axiomatic Thinking for Information
Retrieval and Related Tasks) [4] has contributed to highlight the relevance of
axiomatic thinking in several areas of Information Retrieval.

In general, formal constraints have proved to be a powerful analysis tool in
several aspects of Information Access problems, which starts from foundational
aspects rather than circumstantial empirical observations, and ultimately pro-
vide qualitative and quantitative improvements on the systems.

7.3 Wrap Up

In summary, the main contributions of this paper with respect to the state of
the art are: (i) a formal analysis and categorization of measures into families
that starts from a probabilistic interpretation, which relates them with their
suitability for particular user scenarios; (ii) a proposal of smoothing techniques
in order to keep the basic properties of metrics; (iii) an empirical study of
metrics based on their strictness (a good result with a strict measure ensures
a good results with respect to other measures) and robustness; and (iv) based
on our formal and empirical results, a set of best-practice recommendations
to select the most appropriate measure in a given application scenario.

8 Conclusions

The current variety of approaches to document filtering evaluation may be not
only the consequence of the different nature of the various filtering tasks, but

11 See [19] for an extensive discussion on the topic
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also a reflection of the lack of a systematic, analytical comparison of the prop-
erties of evaluation metrics. Our work attempts to fill this gap by presenting
a comparison of measures based on formal constraints and properties.

We have relied on only one basic constraint (an axiom to be satisfied by
any valid evaluation measure) that was first proposed by Sebastiani, the strict
monotonicity constraint; and we have proved that not all popular measures
satisfy it. We have also shown that non-compliant measures (such as Preci-
sion/Recall and Lam%) can be modified, under a probabilistic interpretation,
to comply with the monotonicity constraint while preserving their properties.
Our smoothing technique replaces the equiprobability assumption of Laplace’s
correction with a probability based on the input distribution.

Our analysis also shows that the main difference between metrics can be
explained in terms of how non-informative outputs are evaluated. As a re-
sult, many evaluation measures for document filtering can be grouped in three
families, each satisfying one out of three formal properties which are mutu-
ally exclusive. Utility-based measures reward good decisions in the classifica-
tion process, stating an absolute weight for relevant vs. irrelevant documents.
Informativeness-based measures penalize good decisions which are taken by
chance, considering that any non-informative output is equally useless. Fi-
nally, Class-oriented measures penalize reduced outputs (low recall), consid-
ering that the quality of non-informative outputs correlates with its size (in
other words, doing nothing is better than randomly discarding information).

Finally, we have also studied the Reliability/Sensitivity metric pair, which
does not fit into any of the three families, and has two distinctive empirical
properties: (i) it is stricter than all other metrics in our study: a high Relia-
bility/Sensitivity score ensures high scores with all other measures; and (ii) it
is more robust to changes in the set of test items than all other metrics in our
study.

Our results do not prescribe any particular measure as the best option
for every conceivable document filtering scenario. But, from the results of our
formal analysis and our experimentation, a reasonable methodology to select
and adequate measure for a particular document filtering scenario would be
the following:

1. Decide how non-informative outputs should be evaluated, and select a mea-
sure in the appropriate family accordingly.

2. If such decision cannot be made (because the scenario is too general, for
instance) compare results of measures from each of the families, and use
the Reliability/Sensitivity metric pair as a stricter evaluation criterion.

3. If a highly unbalanced input is expected, compute measures in probabilistic
terms with the non-informative smoothing mechanisms proposed in this
paper, in order to avoid a biased analysis.
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2. Enrique Amigó, Javier Artiles, Julio Gonzalo, Damiano Spina, Bing Liu, and Adolfo
Corujo. WePS3 Evaluation Campaign: Overview of the On-line Reputation Management
Task. In 2nd Web People Search Evaluation Workshop (WePS 2010), CLEF 2010
Conference, Padova Italy, 2010.
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Appendix: Formal Proofs

Proof : Utility satisfies the Absolute Weighting property
The characteristic of Utility-based metrics in general, and accuracy in par-

ticular, is that they assign an absolute weight to relevant (versus non relevant)
documents in the output regardless of the output size. For instance, in the case
of the Utility measure Uα, being S¬i and S ′¬i two non-informative outputs:

Uα(S¬i) = αP (S¬i|G)P (G)− P (S¬i|¬G)P (¬G) =

αP (G|S¬i)P (S¬i)− P (¬G|S¬i)P (S¬i) = P (S¬i)(αP (G)− P (¬G))

Therefore, if α = P (¬G)
P (G) then the score of non-informative outputs is fixed.

If α > P (¬G)
P (G) , the score of non-informative outputs grows with its size, and

reversely if α < P (¬G)
P (G) . In summary, the value of the α parameter determines

the relative score of two non-informative outputs.

Proof : Weighted Accuracy satisfies Absolute Weighting
Note that, although Accuracy can be considered a Utility-based measure,

it does not directly satisfy the Absolute Weighting property, given that its
definition does not include any parameter. However, the weighted accuracy
proposed in [8] does satisfy this property, and it is a generalization of Accuracy
(see proof in the appendix).

Weighted Accuracy(S¬i) =
λP (S¬i|G)P (G) + P (¬S¬i|¬G)P (¬G)

λP (G) + P (¬G)
=

λP (S¬i|G)P (G) + P (¬S¬i)P (¬G)

λP (G) + P (¬G)
=
λP (S¬i)P (G) + (1− P (S¬i))P (¬G)

λP (G) + P (¬G)
=

λP (S¬i)P (G) + P (¬G)− P (S¬i)P (¬G)

λP (G) + P (¬G)
=

If we derive over P (S¬i) we obtain:

λP (G)− P (¬G)

λP (G) + P (¬G)
=

λ2P (G)− 1

λP (G) + P (¬G)

Therefore, the score of a non-informative output grows or decreases with
its size depending on whether λ is larger or smaller than 1

2P (G) .

Proof : Lam% satisfies Non-Informativeness Fixed Quality
Given a non informative output S¬i, then:

lam%(S¬i) = logit−1
(
logit(P (S¬i)) + logit(P (¬S¬i))

2

)
=

But given that:

logit(P (S¬i)) = log

(
P (S¬i)

1− P (S¬i)

)
= log

(
1− P (¬S¬i)
P (¬S¬i)

)
=
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= −log
(

P (¬S¬i)
1− P (¬S¬i)

)
= −logit(P (¬S¬i))

The two components in the numerator cancel out each other:

logit(P (S¬i)) + logit(P (¬S¬i)) = −logit(P (¬S¬i)) + logit(¬P (S¬i)) = 0

Therefore, given any non-informative output S ′, the fixed resulting score
is 0.5.

Proof : Phi satisfies Non-Informativeness Fixed Quality

Phi =
TP.TN − FP.FN√

(TP + FN).(TN + FP ).(TP + FP ).(TN + FN)

Phi is always zero if S¬i is non informative (see proof in the appendix),
because then the two numerator components cancel each other:

TP.TN = P (S¬i|G)P (G)P (¬S¬i|¬G)P (¬G) = P (S¬i)P (G)P (¬S¬i)P (¬G) =

P (S¬i|¬G)P (G)P (¬S¬i|G)P (¬G) = P (S¬i|¬G)P (¬G)P (¬S¬i|G)P (G) = FP.FN

And therefore Phi is zero.

Proof : Odds Ratio satisfies Non-Informativeness Fixed Quality
If S¬i is non informative:

Odds(S¬i) =
TP.TN

FN.FP
=

P (S¬i|G)P (G)P (¬S¬i|¬G)P (¬G)

P (S¬i|¬G)P (¬G).P (¬S¬i|G)P (G)
=

P (S¬i)P (G)P (¬S¬i)P (¬G)

P (S¬i)P (¬G)P (¬S¬i)P (G)
= 1

Proof : Macro Average Accuracy satisfies Non-Informativeness Fixed Quality

MAAc(S¬i) =
TP

TP+FN + TN
TN+FP

2
=
P (S|G) + P (¬S|¬G)

2

If S¬i is non-informative then:

MAAc(S¬i) =
P (S¬i|G) + P (¬S¬i|¬G)

2
=
P (S¬i) + P (¬S¬i)

2
=

=
P (S¬i) + 1− P (S¬i)

2
=

1

2

Proof : Kappa statistic satisfies Non-Informativeness Fixed Quality
The Kappa statistic is defined as:

KapS(S) =
Accuracy− Random Accuracy

1− Random Accuracy
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where Random Accuracy represents the Accuracy obtained randomly by an
output with size |S|. In our probabilistic notation, Kappa can be expressed as:

KapS(S) =
(P (S|G)P (G) + P (¬S|¬G)P (¬G))− (P (S)P (G) + P (¬S)P (¬G))

1− (P (S)P (G) + P (¬S)P (¬G))

If S¬i is non informative then P (S¬i|G) = P (S¬i), and the formula returns
zero.

Proof : Chi-square satisfies Non-Informativeness Fixed Quality

Chi(S) =
(|S ∩ G|.|¬S ∩ ¬G| − |S ∩ ¬G|.|¬S ∩ G|) + |T |

|S|+ |G|+ |¬S|+ |¬G|
=

=
(P (S|G).P (¬S|¬G)− P (S|¬G).P (¬S|G)) + 1

2

If an output S¬i is non informative then:

Chi(S¬i) =
(P (S¬i)P (¬S¬i)− P (S¬i)P (¬S¬i) + 1

2
=

1

2

Proof : The F measure of Precision and Recall for the positive class satisfies
non-informativeness growing quality

The F measure for a non-informative output grows with its size (i.e. with
the ratio of items labeled as positive by the system), because

Fα(S¬i) = Fα(P (G|S¬i), P (S¬i|G)) = Fα(P (G), P (S¬i))

The F measure Independence property [43] states that, if the first param-
eter is fixed (in our case, P (G)), F grows with the second parameter (in our
case, P (S¬i), which is the probability that an item receives a posivitive label).
Therefore,

Fα(P (G), P (S¬i)) ∼ P (S¬i)

which satisfies the non-informativeness growing quality.

Proof : Every non informative output receives an F(R,S) score lower than
0.25.

Given a non informative input S¬i, Fα(R(S¬i), S(S¬i)) can be expressed
as:

Fα(R(S¬i),S(S¬i)) =

(
α

P (G|S¬i)P (¬G|¬S¬i)
+

1− α
P (S¬i|G)P (¬S¬i|¬G)

)−1
=

(
α

P (G)P (¬G)
+

1− α
P (S¬i)P (¬S¬i)

)−1
=

(
α

P (G)(1− P (G))
+

1− α
P (S¬i)(1− P (S¬i))

)−1
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We can prove easily that if 0 ≤ x ≤ 1, then the function f = x(1 −
x) is upper bounded by 0.25.12 Therefore, according to the harmonic mean
properties, the maximal value of F(R,S) is:

Fα(R(S¬i),S(S¬i)) ≤
(

α

0.25
+

1− α
0.25

)−1
=

(
α+ 1− α

0.25

)−1
= 0.25

12 We omit the proof; it is enough to solve the equation f’(x)=0.


