

J.M. Corchado et al. (Eds.): DCAI 2008, ASC 50, pp. 90–98, 2009.
springerlink.com © Springer-Verlag Berlin Heidelberg 2009

A Decentralized Model for Self-managed Web Services
Applications

José Mª Fernández de Alba, Carlos Rodríguez, Damiano Spina, Juan Pavón1,
and Francisco J. Garijo2

1 Dep. Ingeniería del Software e Inteligencia Artificial, Universidad Complutense de Madrid
 Facultad de Informática, Ciudad Universitaria s/n, 28040, Madrid, Spain
 jpavon@fdi.ucm.es
2 Telefónica Investigación y Desarrollo
 Emilio Vargas, 6, 28043, Madrid, Spain
 fgarijo@tid.es

Abstract. Self-management in distributed systems is a way to cope with the growing complex-
ity of these ones today, and its support in existing systems requires a transformation in their
architectures. This work presents a decentralized model for the implementation of self-
management capabilities, which also has the advantage of avoiding the single point of failure
(SPOF) issue, providing more robustness to the management system. The proposed architecture
has been validated in a real distributed application.

Keywords: self-management, autonomic computing, multi-agent system.

1 Introduction

Autonomic Computing is a concept initially developed by IBM [1], with the intention
to cope with the increasing complexity of systems, as they grow in the number of
elements and information. This solution intends to automate many of the functions as-
sociated with computing. In concrete, as [1] specifies, a computing system has the
autonomic capability if it can manage itself only with the high-level objectives from
administrators. The goal of such self-management ability is to free system administra-
tors from the details of system operation and maintenance while providing users with
a high-performance service.

The four main aspects of self-management are: self-configuration (automatic seam-
less configuration parameter adjustment), self-optimization (automatic performance
tuning), self-healing (automatic detection and reparation of problems) and self-
protection (automatic prevention from attacks and cascading errors).

IBM proposed a layered architecture [11] in which the upper layers contain the
Autonomic Managers (AMs), and the lowest layer is populated by the managed re-
sources. The management interfaces of these resources are encapsulated as service
endpoints, so that they can be accessed via an enterprise communication technology,
like Web Services. The recommended management model is Web Service Distributed
Management (WSDM) standard [3]. The AMs in the control layer are cooperating
agents [5], which achieve their management goals following high-level policies. They
share a knowledge source, which provide a common domain model and the high-level
information.

 A Decentralized Model for Self-managed Web Services Applications 91

The WSDM specification [3] enables management-related interoperability among
components from different systems and facilitates integration of new ones, improving
scalability. It also provides mechanisms for proactively analyzing different compo-
nent properties such as quality of service, latency, availability, etc. In [14] is de-
scribed an implementation example which is based on the IBM approach using a
centralized architecture with a common Knowledge Repository.

Other self-management architectures like RISE [12] are domain-specific. They fo-
cus on particular system aspects such as: image management [12], workflow adapta-
tion [13] and pervasive computing [15].

The work presented in this paper proposes a framework for incorporating self-
management capabilities into Web Services applications based on WSDM model. It
provides Web Services and Web Applications with autonomous features such as fault
diagnosis, dynamic rebinding, file restoring, and resource substitution.

The approach consists on making each WS component of the system Self-
Managed. Instead of having a common Knowledge Repository, which is often a Sin-
gle Point Of Failure (SPOF), each self-managed Component has self-knowledge
about its own dependences, and social knowledge about their dependent components.
The aim of the paper is to describe the proposed approach, which is illustrated with a
working example of self-healing. The validation framework is based on a website
supporting a distributed social network for artists.

The paper begins with the architectural approach presented in section 2. A more
detailed description of this architecture is shown in section 3, focusing the planning
model in section 4. The case study and the validation of the proposed approach are in
section 5. Finally, a summary of the work done and future work are discussed in the
conclusions at section 6.

2 Approach for Enabling Self-management Features

The proposed approach focus on distributed systems based upon Web Services technol-
ogy. These systems could be transformed into self-management systems by applying a
self-management framework to each component. The basic idea is to make each system
component (WS) self-managed, by enhancing them with new management components
implementing self-management capabilities. Then make the self-managed components

Fig. 1. Transforming a system into a self-managed system

92 J.M.F. de Alba et al.

cooperate in order to make the overall system self-managed. Figure 1, gives an example
of transformation based on the studied case.

Each component has internal parts like files, libraries, etc., and possibly depend-
ences with other components and servers. These components will be monitored, ana-
lyzed and controlled to provide self-management capabilities for each component and
the whole system.

3 Self-managed Architecture

Figure 2 illustrates the internal structure of a service component. The “Component” is
the original component that provides the logical operation of the service. The “Man-
agement” and “ProxyOfControl” components implement the management capabilities
and are added to build the “NewComponent”, which now has the original logical op-
eration and self-management capability.

Fig. 2. Self-management component Architecture

The Management Component is made of packaged agents, resources and a model,
which will be described later. The Management Interface offers operations to others
self-managed components, which might use them to know its operational status.

The “ProxyOfControl” component controls the access to the managed component,
avoiding possible misuses in inappropriate states, and providing information about the
state of the managed component by catching Technical Exceptions. This component
was designed using the State Design Pattern [10].

3.1 Modelling Dependencies

Achieving self-management capabilities require a conceptual model of the domain in-
volved representing explicitly the dependencies among components [2]. Figure 3
shows the model of dependencies shared by the management components.

A managed component could have internal or external dependences: an internal
dependence might be a dependence with a computing entity such as a file or a library,
while an external dependence might be a dependence with a server, e.g. an email
server, a database server, a file server or any application service. The application ser-
vice external dependence refers to an abstract service, it means, a required interface,
which is resolved at runtime.

 A Decentralized Model for Self-managed Web Services Applications 93

Fig. 3. Dependences

All dependences have a location. The location is an attribute indicating how to ac-
cess the component that supplies the dependence, for usage or monitoring purpose.
For application services, the location refers to the required interface, and the registry
service location to find out a particular service to supply the dependence.

The dependence also has a set of requirements that define the properties to be satis-
fied by the related component.

A property description has the following attributes:

• Name: a full-qualified name.
• Description: a human-readable description.
• Required: if it is required or optional.
• Expected value: the expected value of the property.

Examples of properties are: can read, can write, XML well-formed, syntax of con-
tent validated, file names patterns, availability, time of response, etc.

3.2 Self-management Agents and Resources

The logical control was designed using the Multi-Agents paradigm [5], and it is im-
plemented using component patterns based on the ICARO-T framework [6] [7]. There
are four types of agents:

• The Manager: It is responsible for creating, terminating and management
the rest of agents and resources in the Management Component.

• The Installer: It is responsible for verifying the internal dependences and
to fix possible errors that may happen during the first execution of the man-
aged component.

• The Runtime agent: It is responsible for verifying the right functioning of
external dependences at runtime, passing control to the Repair agent when
errors occur.

• The Repair agent: It has the responsibility of fixing errors send by the
Runtime agent.

Resources perform different task required by the agents. Some of them are respon-
sible for monitoring the properties of the managed component’s dependences.

94 J.M.F. de Alba et al.

Fig. 4. Monitoring Resources

“InternalDependenceMonitoring” resource is in charge of getting the properties
values of each managed component’s internal dependence, and of inferring its opera-
tional status.

The “ServerMonitoring” resource is responsible for monitoring the servers as File
servers, Database servers, etc, which are used by the managed components.

The “ApplicationServiceMonitoring” resource is responsible for monitoring appli-
cation services used by the managed component. It monitors specific services instead
of abstract services. It generates reports containing the service resolution of the ab-
stract service dependence.

Monitoring resources generate reports that are read by agents to get the operational
status of both internal dependencies of managed components, and external dependen-
cies of those components. The Information about what to monitor is provided by the
two XML description files: the Internal Dependence Description File (IDDF), and the
External Dependence Description File (EDDF).

Agents use the Resources to monitor and analyze the internal structure of the man-
aged component. The monitoring of external components is performed through que-
ries and publish/subscribe mechanisms. Agents also gather information about the
Managed Component state from the “ProxyOfControl”. This information is used to
achieve fault diagnosis.

3.3 The Behaviour of a Self-managed Component

The computing behaviour of a self-managed component will be illustrated with a
working self-repair example taken from the Artist Community system, which has
been used for validating the approach. The scenario is based on the failure of one
running components –“GestionUsuarios”–, which affects the component “Proce-
samientoTrabajos” depending on it. The system behaviour is depicted in figure 5.
The Runtime Agent in “ProcesamientoTrabajos” detects the possible malfunction
through its monitoring capability.

The Runtime Agent publishes the inferred status and stops the Managed Compo-
nent “ProcesamientoTrabajos” because repair is needed. Then, it requests to the Man-
ager to create an instance of the Repair Agent, which will be in charge of solving the
problem. This agent first elaborates a repair plan in order to rebind an alternative of
“GestionUsuarios”, and then instantiates and executes the plan.

 A Decentralized Model for Self-managed Web Services Applications 95

Fig. 5. A repair case

Fig. 6. Creation and execution of a plan by the Repair Agent

The repairing plan successes because an alternative service is available in the sys-
tem. The new service rebound by the execution of the plan will be monitored in the
next cycles of the Runtime Agents. If the new service's status is Available, the Run-
time Agent will infer an Available status for the managed component, start it and pub-
lish the new status.

96 J.M.F. de Alba et al.

4 Planning Model

A Plan in this model is a sequence of Tasks. A Task is defined as an operator that
somehow changes the environment state pursuing some objective.

The preparation of a plan consists in chaining different tasks in sequence. This
process is dynamically performed by an agent anytime it detects some issue reported
by monitoring resources with the intention to solve the problem.

Fig. 7. The Planning Model

For an agent to decide which tasks are included in the plan, a set of “when-then” rules
whose “when” part contains the possible symptoms detected for the possible issues.
These rules are defined in a text file and fired by a rules engine based on RETE algorithm
[9]. A rule example is given in figure 8. The set of predefined tasks and the rules file can
be extended in order to customize the agents’ behaviour against some issue.

Fig. 8. A rule example

The preparation of the plan is finished when there are no more rules to fire. The
plan is then ready to be executed, usually by the agent that prepared it.

5 Validation

The framework has been validated building a distributed system for assisting a
Graphic Arts Community (the users) and then enhancing each system component with
self-management capabilities.

 A Decentralized Model for Self-managed Web Services Applications 97

The system is made of separated components that perform the different functions,
some of them requiring others to their own functionality. The system is implemented
using Java™ language and JAX-WS framework to support remote access via Web
Services technology. Their interfaces and Access Points are registered in a central
UDDI Registry. In addition, the system uses a SMTP Server, a Database Server and a
UDDI Registry Server.

The transformation framework is made of a set of classes and file resources im-
plemented with Java™, which are included together with business classes to generate
a unique deployable component that runs on the same platform.

After framework application, the system has been successfully tested with a collec-
tion of significant scenarios including: restoration of missing files, XML validations,
rebinding of services with replicated Web Services, etc.

Results showed that, although the computational overload is perceptibly increased,
user-system interactions are not affected, while service continuity and stability are
significantly improved.

6 Conclusions

The results obtained with the prototype show that the self-managed components per-
form successfully local monitoring, dynamic plan synthesis, and plan execution for
component troubleshooting. Coordination among components is also achieved for
fault diagnosis and self-healing. Compared to other approaches based on hierarchical
management structures, making each component self-managed enforces their auton-
omy for failure detection and problem solving, and peer-to peer communication
among components provides robustness and fault tolerance at system level. Decentral-
ized control has also well known shortcomings with respect to centralized approaches,
as the need of more sophisticated protocols for communication and cooperation.
However, for large systems the advantages overcome the disadvantages, because this
kind of architecture avoids bottlenecks, are more flexible and can be easily extended.

Future work should focus on self-optimization, self-configuration and self-
protection. The last objective could be achieved following a similar approach consist-
ing on enhancing each component with self-protection capabilities. This idea may not
be applicable to the first two objectives. Achieving self-optimization and self-
configuration would require system-wide parameter adjustment based on global sys-
tem features that must be obtained seamlessly from system components. Therefore,
individual components should “agree” on the proposed changes to achieve the global
system behaviour. This might be done through the introduction of component’s cho-
reographies –group tasks carried out by agents in order to achieve common objec-
tives, which are supported by some interaction protocols.

Another key issue is the automatic generation of Proxy classes and configuration
files from code annotations made by developers in the business component code. This
might be done by developing specific tools that will interpret the code annotations to
detect component’s usage of Web Services and other external components, as well as
internal dependences. This annotation-oriented dependence declaration style, seems
more intuitive and less error-prone than hardcoding dependency description files.

98 J.M.F. de Alba et al.

Finally, the self-management framework can be applied to itself since it is also a
system. This can be useful to prevent errors in management tasks and to ensure that
the machinery (configuration files and auxiliary classes) is ready.

Acknowledgements. We gratefully acknowledge Telefónica I+D, and the INGE-
NIAS group for their help and support to carry out this work.

References

1. Kephart, J.O., Chess, D.M.: The Vision of Autonomic Computing. Computer Magazine on
January, 41–50 (2003)

2. D’Souza, D.F., Wills, A.C.: Objects, Components and Frameworks With UML. Addison
Wesley, Reading (1999)

3. OASIS WSDM Standards, An Introduction to WSDM, http://docs.oasis-open.
org/wsdm/wsdm-1.0-intro-primer-cd-01.pdf

4. OASIS WSDM Standards, Management Using Web Services Part 2, http://docs.
oasis-open.org/wsdm/wsdm-muws2-1.1-spec-os-01.pdf

5. Mas, A.: Agentes Software y Sistemas Multi-Agentes: Conceptos, Arquitecturas y
Aplicaciones

6. Garijo, F.J., Bravo, S., Gonzalez, J., Bobadilla, E.: BOGAR_LN: An Agent Based Com-
ponent Framework for Developing Multi-modal Services using Natural Language. In:
Conejo, R., Urretavizcaya, M., Pérez-de-la-Cruz, J.-L. (eds.) CAEPIA/TTIA 2003. LNCS
(LNAI), vol. 3040, p. 207. Springer, Heidelberg (2004)

7. The ICARO-T Framework. Internal report, Telefónica I+D (May 2008)
8. IBM, An architectural blueprint for autonomic computing, section 2.2
9. Forgy, C.: Rete: A Fast Algorithm for the Many Pattern/Many Object Pattern Match Prob-

lem. Artificial Intelligence 19, 17–37 (1982)
10. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable

Object-Oriented Software
11. IBM, An architectural blueprint for autonomic computing
12. Lee, J., Jeong, K., Lee, H., Lee, I., Lee, S., Park, D., Lee, C., Yang, W.: RISE: A Grid-

Based Self-Configuring and Self-Healing Remote System Image Management Environ-
ment. In: Proceedings of the Second IEEE International Conference on e-Science and Grid
Computing (e-Science 2006) (2006)

13. Lee, K., Sakellariou, R., Paton, N.W., Fernandes, A.A.A.: Workflow Adaptation as an
Autonomic Computing Problem. In: WORKS 2007 (2007)

14. Martin, P., Powley, W., Wilson2, K., Tian, W., Xu1, T., Zebedee, J.: The WSDM of Auto-
nomic Computing: Experiences in Implementing Autonomic Web Services. In: Interna-
tional Workshop on Software Engineering for Adaptive and Self-Managing Systems
(SEAMS 2007) (2007)

15. Ahmed, S., Ahamed, S.I., Sharmin, M., Haque, M.M.: Self-healing for Autonomic Perva-
sive Computing. In: Adams, C., Miri, A., Wiener, M. (eds.) SAC 2007. LNCS, vol. 4876.
Springer, Heidelberg (2007)

	A Decentralized Model for Self-managed Web Services Applications
	Introduction
	Approach for Enabling Self-management Features
	Self-managed Architecture
	Modelling Dependencies
	Self-management Agents and Resources
	The Behaviour of a Self-managed Component

	Planning Model
	Validation
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

