
A distant supervised learning system for the TAC-KBP Slot Filling and
Temporal Slot Filling Tasks

Guillermo Garrido, Bernardo Cabaleiro,
Anselmo Peñas, Álvaro Rodrigo and Damiano Spina

NLP & IR Group at UNED
Madrid, Spain

{ggarrido,bcabaleiro,anselmo,alvarory,damiano}@lsi.uned.es

Abstract

This paper describes the system implemented
by the NLP GROUP AT UNED for our first
participation in the Knowledge Base Popula-
tion at the Text Analysis Conference (TAC-
KBP). For this Slot Filling Task, our approach
was to design a distant supervised learning
system, which was then specialized for the
Regular Slot Filling and Full Temporal Slot
Filling subtasks.

From the initial Knowledge Base and source
document collection distributed by the or-
ganizers, we automatically gathered training
data for supervised slot classifiers. We used
a rich document representation, augmenting
syntactic dependency trees with named entity
recognition, coreference resolution, temporal
events annotation and semantic graph trans-
formations.

1 Introduction

For the first UNED participation in the KBP Slot
Filling Task, we developed a simple distant super-
vision approach, following the paradigm described
by Mintz et al. (Mintz et al., 2009), which has also
inspired other participants in earlier editions of the
task (Agirre et al., 2009; Surdeanu et al., 2010).

In this paper, we describe the general architec-
ture, design and implementation of the system; we
give a preliminary analysis of the results, describe
the problems and difficulties that we have encoun-
tered and propose lines of inquiry we plan to follow
in future work. We participated in two of the sub-
tasks: the Regular Slot Filling Subtask and the Full
Temporal Slot Filling Subtask.

In Figure 1, we depict the data flow of our sys-
tem. As pointed out in (Ji and Grishman, 2011), the
slot filling task combines Question Answering (QA),
Information Retrieval (IR) and traditional Informa-
tion Extraction (IE). The QA/IR aspect of the task is
having to answer to a query, obtaining the response
from a document collection, while as in general IE,
the queries involve a fixed set of relations of enti-
ties. Thus, the architecture of many of the systems
that have taken part in the KBP slot filling task, and
of our own, includes three phases: (1) QA/IR pas-
sage/document retrieval; (2) IE answer extraction;
and (3) answer aggregation.

For the retrieval of candidate documents, that are
used both in training and in the application of the
system, we used a straightforward IR approach, that
is described in Section 3. The IE component is the
core of our system; it exploited a rich document rep-
resentation, described in Section 4; the general dis-
tant supervised learning approach is detailed in Sec-
tion 2; this section also details how answers were
aggregated to produce a set of runs for evaluation.

The focus of our development was to tackle
the Temporal Slot Filling subtask; this conditioned
many of our engineering decisions. With a few adap-
tations, we also addressed the Regular Slot Filling
subtask. The specifics of the the Regular Slot Filling
subtask are described in Section 7, while the partic-
ipation in the Full Temporal Slot Filling subtask is
detailed in Section 6.

Finally, preliminary results are reported in sec-
tion 8, and our conclusions in section 9.

KBP
Source

Collection

Training

Application

Training
examples

+ / -

Document
Index

Wikipedia
Knowledge

Base

Training seeds
< entity, slot type, value >

Classifier/s

index
train

Document
representation

KBP
entities

unlabelled
candidate

extracted
slots

output

aggregate and filter

represent

query:
<entity>

classify

map
attributes
to slots

match
seed - document

candidate
document

query: <entity, value>

Figure 1: Scheme of the system data flow.

2 Slot Classification

In this section, we describe the general architecture
of our system.

2.1 Automatic acquisition of training data

From the Wikipedia-derived Knowledge Base (KB,
from now on) made available by the task organiz-
ers, we extract a set of relation triples or seeds; each
seed is a triple: < entity, slot type, value > where
the entity corresponds to an article’s title, and the
slot type is one of the target slots of the task. We
automatically obtain training examples by matching
the seeds to the documents in the KBP source col-
lection, and use those examples to train a multi-label
classifier.

The attributes of the KB do not exactly match the
target slot types of the task. Using the mapping pro-
vided by the task organizers, we translated from (in-
fobox class, attribute) to KBP slot type1. Unfortu-
nately, this mapping can be ambiguous, as a particu-
lar Wikipedia infobox attribute can contain, for dif-
ferent instances, a value that maps to either none,
one, or many KBP slots.

1This KB has been obtained from Wikipedia infoboxes;
there are several Wikipedia infobox classes, and each summa-
rizes the key facts about an entity, as an (attribute, value) pair.

For instance, the infobox in the article “Liverpool
F.C”, belongs to the infobox class “Infobox Foot-
ball club”, and has the attribute “founded”, which
value is “1892 (by John Houlding)”. This value
should be splitted and mapped to two KBP slots:
org:founded (1892) and org:founded by
(John Houlding). Solving this kind of ambigui-
ties could be done by implementing heuristics cus-
tomized for each (infobox class, attribute) (Surdeanu
et al., 2010), and we have not yet attempted it.

Another source of ambiguity is that the value of
an Infobox attribute might contain a list of valid val-
ues, rather than a single one. For instance, the value
of (Julia Roberts, spouse) is:

“Lyle Lovett (1993-1995)
Daniel Moder (2002-present)”

In such cases, we have attempted to split the value
and produce two seeds for the per:spouse slot,
one with value “Lyle Lovett” and another with value
“Daniel Moder”.

The values are sometimes noisy and our proce-
dures are not sufficiently fine-grained to always ob-
tain clean values. We only performed very sim-
ple cleaning, such as separating values by end-of-
lines. We leave for future work the task of obtaining
cleaner seeds from the Knowledge Base.

2.2 Gathering of distant training examples

From a seed triple: < entity, slot type, value >,
we retrieve candidate documents that contain both
the entity and value, within a span of 20 tokens, us-
ing the IR engine. A certain amount of extra noise is
allowed as the tokens in entity and value can appear
in a different order.

These documents are represented as augmented
dependency parsing graphs (see section 4).

The entity and value are matched to the document
representation. If a node matches the entity and an-
other node matches the value, the seed is used for
training. Otherwise, it is discarded. As mentioned
above, the seeds we are working with are noisy. The
aim of this matching step is to reduce the effect of
this issue; we also have to take into account that
there is a trade-off between the tightness of this seed
filtering and the size of our training set (and less data
would damage our performance).

The matching procedure uses the descriptor of the
node to compare against the string text of the en-
tity and value. For the entity, a string comparison is
performed, allowing for small differences by using
the Levenshtein distance with a positive matching
threshold for the ratio of similarity of 0.8.

The comparison algorithm for the values is
slightly more complex. We test each of the nodes
connected to the identified entity node in a BFS
traversal of the graph representation, limited to paths
of at most length 10. We have manually defined an
expected Named Entity (NE) type for each KBP slot
type2. If the node value is not identified with the
same type, the node is not considered for the match-
ing. This NE type filtering procedure has also been
applied in the past (for instance in (Surdeanu et al.,
2010)). The NE type filtering we applied in the Reg-
ular Slot Filling and Temporal Slot Filling subtasks
differed slightly. In sections 6 and 7, we report on
them.

2.3 Training

Each example was represented by binary features;
some of them were inspired by previous work (Sur-
deanu and Ciaramita, 2007; Mintz et al., 2009;
Riedel et al., 2010; Surdeanu et al., 2010), and oth-
ers were unique of our graph representation.

We established a threshold on the features sparse-
ness: features appearing in less than 5 training ex-
amples were discarded.

Table 1 summarizes our choice of features, some
of which were only applied to the Temporal Slot
Filling Subtask.

2.4 Classification process

To apply the classifier to the task of detecting the
values for the slots, we followed a simple approach:

• Using our IR engine, we retrieved the sub-
collection of documents containing the query
entities (limiting to 100 documents per query).

• We replicated the analysis of the document to
obtain the same graph representation.

• We searched for the node or nodes matching
the query entity, and from each of them: We
started a BFS search, limited to paths of length

2The NE annotation of the texts was obtained from the Stan-
ford NE Recognizer (Finkel et al., 2005).

at most 10, were each of the traversed nodes
was proposed as a candidate value. We use
the same feature generation to represent each of
the < entity node, value node, document >
triples as an unlabelled example. We run the
classifier or classsifiers on the set of examples,
to label them as either positive for any of the
slots types (classes), or with the negative label
(unclassified).

In the case of Temporal Slot Filling (Section 7,
we used a battery of binary classifiers (extractors).
For the Regular Slot Filling, we experimented with
a single multi-class classifier (Section 6).

2.5 Answer aggregation

The classification process yields a predicted class la-
bel, plus a real number indicating the margin (linear
distance from the example to the SVM hyperplane
boundaries). We performed an aggregation phase
to sum the margins over distinct occurrences of the
same value. The rationale for this is that when the
same value is labelled as positive in more than one
example, we should accumulate that evidence.

At this point, we performed very basic filtering,
discarding candidates that did not have the expected
NE type, as defined for us for the slot, and used a
closed list of places to distinguish between cities,
countries and regions.

For those slot types that accept a single response,
we chose the best (highest margin) extracted by the
system. For those that accept a list as response, we
chose the three highest extracted.

The system did not involve manual annotation,
other than the NE expected types list and this ge-
ographic locations list.

3 Retrieval of candidate documents

The candidate documents retrieval phase consists of
a standard IR approach. We decided to use a simple
IR approach, without taking into account the ambi-
guity problem, in order to have a baseline for this
phase. Ideally, an entity linking component should
be put in place.

We use the Lucene function ranking with the
default parameters and we use the entity name as
query. The first 100 documents are considered for
the searching of slot values phase. This threshold

Feature family Feature name Description
Syntactic dependency path dependency path between ENTITY and VALUE

in the sentence [represented with the unigrams
and bigrams of dependency labels, POS tags,
NE tags]

Placeholders X-annotation NE annotations for the sentence fragment X
X-pos Part-of-speech annotations for the sentence fragment X

Lexical context X-gov Governor of X in the dependency path
X-mod Modifiers of X in the dependency path

Properties X-has age X is a NE, and we have identified it has an age attribute.
X-has class-C X is a NE, and we have identified it has a class C.
X-has property-P X is a NE, and it has a property P
X-has-Y X is a NE, and it is in a relationship to-have with

another NE, Y
X-is-Y X is a NE, and it is in a relationship to-be with

another NE, Y
X-gender-G X is a NE, and it has gender G

Properties of the verb V V -tense Tense of the verb V in the path.
(features for Temporal Slot Filling V -aspect Aspect of the verb V in the path.
only) V -polarity Polarity (positive or negative) of the verb V in the path.

Table 1: Features included in the model. X stands for both the ENTITY and the VALUE sentence fragments (we
generate a set of features for each). The verb features are generated from the verbs identified in the path between
between ENTITY and VALUE, and appear only in our models for the Temporal Slot Filling subtask.

PER ORG ALL
recall@10 0.44 0.38 0.41
recall@50 0.72 0.63 0.67

recall@100 0.79 0.71 0.75

Table 2: For the document retrieval, the threshold of 100
documents per entity was empirically obtained evaluating
the average recall of the support documents of previous
editions of the task, over Person and Organization entities
and both together.

was empirically defined after a partial evaluation of
the recall of the relations included on the supervised
collection. For each entity, we have calculated the
mean recall of the support documents in the search
results. On average, a total of 75% support docu-
ments are covered in the first 100 results.

A more complete evaluation of the overall system
is needed in order to understand the impact of this
baseline approach, and it is left for future work.

4 Document Representation

We have experimented with the effect of using a rich
document representation, that uses a graph structure,
obtained by augmenting the syntactic dependency
tree analysis of the document with semantic infor-
mation.

A document D is represented as a document
graph GD; each of the nodes in the graph represents
a chunk of text, which is sequence of words. Each
node is labeled with a dictionary of attributes, some
of which are common for every node: the words
it contains, their part-of-speech annotations (POS),
lemmas, and their positions in the phrase and in the
sentence. Also, a representative descriptor, which
is a normalized string value, is generated from the
chunks in the node.

Certain nodes are also annotated with one or more
types. There are three families of types:

• Events: Verbs that describe an action. They
contain information about tense, polarity and
aspect.

• Time expressions: Normalized representation
of a time and date.

• Named entities: With additional information,
such as gender or age.

Edges in the document graph represent relations
between the nodes. There are four kinds of rela-
tions:

• Syntactic: Indicating a dependency relation be-
tween two chunks.

• Coreference: Indicating that two chunks refer
to the same discourse referent.

• Semantic: Indicating semantic relation be-
tween two chunks, such as hasClass,
hasProperty and hasAge

• Temporal: Indicating a temporal relation be-
tween events and time expressions.

The graph representation is produced by a succes-
sion of four steps, each of them adding a new layer
of information. Schematically, the process is the fol-
lowing:
1. Process the document collection with Stanford

CoreNLP.
2. Add Tarsqi Toolkit information to the data al-

ready extracted.
3. Collapse related named entities by coreference

into a single discourse referent node, and nor-
malize the graph.

4. Add semantic information.
This information generated from the documents is

the source of the features we use for classification,
that were summarized in Table 1.

In the following sections, we detail each of these
steps.

4.1 Dependency Parsing, Named Entity
Recognition and Coreference Resolution

Dependency parsing is included in the Stanford
CoreNLP software (Klein and Manning, 2003),
which provides syntactic dependency analysis and
part of speech (POS) tagger. Stanford CoreNLP also
has a named entity recogniser (Finkel et al., 2005).
This tool classifies chunks in different kinds of en-
tities, mainly persons, organizations and locations,
but also numbers, ideologies, causes of death, crim-
inal charges, titles and others. Note that Stanford
CoreNLP classifies time NE too, but we use the
Tarsqi Toolkit to resolve this issue. We also take
advantage of Stanford CoreNLP to resolve corefer-
ence (Lee et al., 2011; Raghunathan et al., 2010).

4.2 Events and Temporal Information

Temporal information and events are extracted
through the Tarsqi Toolkit (Verhagen et al., 2005).
Time expressions are marked and normalized data
is generated following TimeML TIMEX3 stan-
dard (Pustejovsky et al., 2007). Also some verbs

are marked as events, and information about tense,
polarity and aspect is provided. Moreover, Tarsqi
Toolkit automatically generates temporal relations
between expressions and events.

4.3 Collapsing referents of discourse and
graph normalization

The aim of graph normalization is simplify data
which does not provide any semantic difference,
such as active and passive. In this way, we cluster
referents of discourse into the same node, and then
eliminate the redundant edges that may result of the
operation. In clusters with a entity with a known
name, all the pronouns are omitted. Also there is a
process which relates time expressions to the corre-
sponding event instead of its original syntactic rela-
tion. In this step, the document graph GD is trans-
formed into a collapsed document graph, GC . Each
node of GC clusters together coreferent nodes, and
represents a discourse referent. Thus, a node u in
GC is a cluster of nodes u1, . . . , uk of GD. There is
an edge (u, v) in GC if there was an edge between
any of the nodes clustered into them: u1, . . . , uk and
any of the nodes v1, . . . , vk′ .

4.4 Addition of semantic information

• Normalize meaning of copulative verbs.

• Normalize genitives.

• Use appositions and genitives to infer semantic
class indicators, included age and property.

• Use information from pronouns to assign gen-
der to a NE.

Graphic example Let us picture the graph repre-
sentation process for a simple example. Let us say
we had the sentence: “John was so tired that he fell”.
We would start from the well known syntactic de-
pendency tree of the sentence, and after applying
the steps 1 and 2 described above, we would have
the Figure 2.

After applying the subsequent steps 3 and 4, we
would have the Figure 3

5 Slot Temporal Restrictions

Task organizers define a 4 tuple of constraints to fill
in the new temporal slot filling task. This constraints
are T1, T2, T3 and T4, which represents that the slot

John[NNP,John]_1_1, NER:PERSON

he[PRP,he]_6_1

StanfordCoreference

was[VBD,be]_2_1 so[RB,so]_3_1

that[IN,that]_5_1

tired[JJ,tired]_4_1, ASPECT:NONE,
 TENSE:PAST, POLARITY:POS

nsubj cop advmod

fell[VBD,fall]_7_1, ASPECT:NONE,
 TENSE:PAST, POLARITY:POS

ccomp

complmnsubj

Figure 2: Graph obtained, for the sentence “John was so tired that he fell”, after applying step 1 (Dependency Parsing,
Named Entity Recognition and Coreference Resolution) and step 2 (Events and Temporal Information).

John[NNP,John]_1_1 NER:PERSON
DESCRIPTOR: John POS: N GENDER:[MALE]

tired[JJ,tired]_4_1 ASPECT:NONE
 TENSE:PAST POLARITY:POS DESCRIPTOR: tired POS: V

hasProperty

so[RB,so]_3_1 DESCRIPTOR: so POS: RB

advmod

fell[VBD,fall]_7_1 ASPECT:NONE
 TENSE:PAST POLARITY:POS DESCRIPTOR: fall POS: V

arg1

that[IN,that]_5_1 DESCRIPTOR: that POS: IN

arg0

complm

Figure 3: Graph obtained after applying also steps 3 (Graph Normalization) and 4 (addition of semantic information).

value holds true in a period which starts between T1
and T2 and ends between T3 and T4. Besides, it is
sometimes not possible to fill all the constraints. In
this section, we describe how we gather the data to
fill those constraints.

5.1 Temporal relations acquisition

The first step of the acquisition of temporal relations
is to identify a syntactic pattern “Event - preposition
- Time Expression” within the lexical context of the
candidate entity and value in the document. To do
so, we search the time expression that is closest to
the shortest path between the entity node and the
value node. This is done via a breadth-first-search
in the graph, starting from the nodes in the path, that
are visited first, in order from value to entity. The
search is limited to a depth of 2.

If an “Event - preposition - Time Expression” pat-
tern has been found, it is then transformed into one
relation from the set within, throughout, beginning,

ending, after and before.
Next, we use the Tarsqi Toolkit to get temporal

relations between events and temporal expressions
as we explained in Section 4.2. This temporal rela-
tions may be included, simultaneous, after, before,
begun by or ended. We normalize the data to match
this relations to the first ones.

5.2 Semantic Considerations

We need to consider the semantic of the event in
order to decide the time period associated to a slot
value. This step is important because the event could
refer just to the beginnig, the ending, or both times
of the slot value. This information helps us to decide
what constraints must be managed. For instance, it
is obvious that it is not the same to have the event
marry than to have the event divorce at the time of
deciding the temporal constraints associated to the
per:spouse slot. We classify the way of giving
time constraints in three temporal groups depending

on slot type and event:

• Start: it refers to have information about just
the starting period of the slot value (i.e. T1 and
T2 constraints). Some examples of this group
are the event marry in per:spouse slot and
born in per:* of residence.

• Finish: this group is used when only infor-
mation about the ending period of the slot
value is considered (i.e. T3 and T4 con-
straints). Some examples of this group are the
event divorce in per:spouse slot and die in
per:* of residence.

• Period: this group is associated to situa-
tions where any part of the period can be set
(i.e. T1, T2, T3 or T4 constraints). An
example of this group is the event live in
per:* of residence. This group is used
as default when no event is detected.

5.3 Constraints Production

The final decision about the value given to each con-
straint depends on the temporal group and the tem-
poral relation. The processing applied to the begin-
nig and ending groups are similar, but considering
thay they refers to diferent constraints (T1-T2 for
start and T3-T4 for finish): time relations “after”
and “beginning” affects just to the starting point of a
period (constraints T1 and T3), while “before” and
“ending” only modifies the end of the period (con-
straints T2 and T4). When time relations “within” or
“throughout” are found, the whole period (the two
constraints affected in the temporal group) is fixed.

In case of the period group, it can be given the
starting range of the slot value (denoted by T1 and
T2), the range of the ending time (using T3 and T4),
just the initial point (T1) or the final point (T4), or
information about the time when the value was valid
(denoted by T2 and T3).

Finally, we aggregate all the time constraints
found for the same slot value accross different doc-
uments with the objective of narrowing the time
ranges associated to a slot value. This processing
consists in selecting the maximun T1 and T3 con-
straints among the available ones, and the minimun
T2 and T4 constrains among the ones found.

6 Regular Slot Filling Subtask

6.1 Named Entity type matching
For each node that matches the NE condition for
the slot, if any, we do: substitute punctuation by
white space; collapse white space; wee give a posi-
tive matching if: the value string is contained in the
descriptor; or the descriptor is contained in the value
(and it is not an English stop word); or the Leven-
shtein distance between value string and descriptor
is over 0.8

A source of trouble here is that for some slot
types, there is not a perfect correspondence between
the NE types obtained from the annotation and the
actual type of the values that the human evaluators
of the KBP Slot Filling task accept as correct.

Our initial approach was to force the NE types
of every slot, but our first experiments showed that
this condition was too restrictive. For the slots:
org:political/religious affiliation,
per:origin, per:religion, we decided not
to apply NE filtering.

For the slot type per:title, in particular, we
accepted values annotated by the TITLE Stanford
NE type or not annotated by any type.

This exceptions aimed at obtaining more and bet-
ter positive examples, but also increased the number
of examples to consider, as nodes with no NE an-
notation were tried for matching several of the slots,
and as we will describe below, unmatching pairs are
considered negative examples.

In the process of gathering positive examples,
once fixed the entity node in the graph, for each
candidate value that did not match the seed value,
we generated a negative training example. Not only
nodes with an identified NE type were considered, as
we thought no NE nodes would be the right response
to, for instance, the per:title slot. We kept 5%
of the negative examples, as the set produced by this
procedure was very large.

6.2 Choice of Classifier
We trained a SVM multi-class classifier with the
positive and negative examples. We used the im-
plementation3 of the cutting-plane SVM algorithm
(Joachims et al., 2009). We empirically evaluated a

3This implementation is freely available at http://
svmlight.joachims.org/svm_multiclass.html

Collection Positive
Training
Exam-
ples

Negative
(unla-
beled)
examples

Slots with
some ex-
ample

KBP 18 491 5 242 42
Semi-supervised 17 682 - 32
Supervised 809 - 42

Table 3: Statistics on the training examples available for
the Full Regular Slot Filling Task (collapsed version of
the graphs). The training for the KBP Participation in-
cludes the positive examples of the semi-supervised and
supervised collections, and a random sample of the nega-
tive examples found while processing both collections.

few configurations on the collection of known slots
from earlier editions of the KBP Slot Filling Task,
and decided to use a large value for the parameter C
that controls the trade-off between training error and
margin: C = 10 000. All other parameters were left
in their default values.

6.3 Use of supervised seeds

Unfortunately, our elaborate automatic labeling pro-
cedure did not produce training examples for every
slot type of the task. Of the 42 slots to be extracted,
we had less than 2 training examples for up to 12
slots. We could not expect to extract any value for
these slots.

In an attempt to overcome this, we added to the
training seeds a set obtained with supervision; even
though this contradicted our initial semi-supervised
design. This supervised set is the set of the tuples: <
entity, slot type, value, doc >, where entity is on
of the query entities of the 2009 and 2010 editions of
the KBP Slot Filling Task, and the slot type, correct
value and support document are those annotated in
the official evaluation key. This added 809 examples
to our training, covering all slots, and producing a
training dataset less disperse.

Statistics of the training examples are given in Ta-
ble 6.3, for the collapsed version of the graphs4.

6.4 Runs submitted

Let us describe the runs submitted to the task, that
are also summarized in Table 4.

4The differences in the processing of the document graphs
and the collapsed document graphs yields small differences in
the number of training examples finally available; we only re-
port those of the collapsed version.

Collapse
discourse
referents

Lexical
Context
features

Semantic
Transfor-
mations

UNED1 X
UNED2 X X X
UNED3 X X

Table 4: Runs submitted to the Regular Slot Filling Task.
The marked components were used for each of the runs.

UNED1 In this first run, we used the document
graph GD without collapsing coreferent nodes.

UNED2 For the second run, we applied our full pro-
cessing, using for representation the collapsed doc-
ument graphs, GC .

UNED3 This last run also used the collapsed docu-
ment graphs, but differed from the previous in that
we did not use the features marked as “Lexical con-
text” in Table 1, that consider the actual words in the
context of the entity and value nodes.

7 Temporal Slot Filling Subtask

The focus of our development was to tackle this sub-
task. Many of our engineering decisions, such as
processing the documents for event detection (with
the Tarsqi Toolkit), were taken because of this ob-
jective.

In this section we describe the particular adapta-
tions of our general approach for the Full Temporal
Slot Filling subtask.

7.1 Named Entity type matching
There are significant differences to how we per-
formed this step for the Regular Slot Filling subtask.
On the one hand, we enforced Named Entity type
matching both of the candidate values and of the en-
tities. As we explain below, we used a set of binary
classifiers, or extractors, one for each of the slots to
extract; for each particular slot classifier, only can-
didates with the expected entity and value types for
the slot were used in the application phase.

7.2 Choice of Classifiers
For this subtask, we used a battery of binary classi-
fiers; each of them was a SVM classifier with linear
kernel (Joachims, 2002). We used the SVMLight
implementation available at http://svmlight.
joachims.org/ We did not have time to tune the

classifiers, so we left all parameters in their default
values.

As we traverse the document graph looking for
positive examples of a slot type, if we encounter a
node that matches the expected NE type of the slot,
but does not match the value in the seed, we gen-
erate a negative example for that slot classifier. As
opposed to the sampling of negative examples we
performed in the Regular Slot Filling subtask, here
we kept all negative examples.

For this subtask, we did not use any supervised
training data, as all of the target slots were covered
by our semi-supervised training examples.

Collapse
discourse
referents

Use dates in
document

Temporal
resolution

RUN 1 X
RUN 2 X X
RUN 3 X X X

Table 5: Runs submitted to the Full Temporal Slot Filling
Task. The marked components were used for each of the
runs.

7.3 Runs submitted
For the three runs we submitted for the task, we used
different versions of the underlying document graph
representations, and different processing to gener-
ate the temporal constraints. The classifier features
we used are common for every run, and are detailed
in Table 1 and Section 2. In the following para-
graphs, we describe the differences between each of
the runs, these are also summarized in Table 5.

RUN1 In this first run, we used the document graph
GD without collapsing coreferent nodes. To gener-
ate the temporal constraints, we aggregate the dates
of the documents that hold the solutions to fill the
constraints T2 and T3.

RUN2 In the document representation used for this
second run, we applied our full processing, using for
representation the collapsed document graphs, GC .
To generate the temporal constraints, we simply ag-
gregate the dates of the documents that hold the so-
lutions to fill the constraints T2 and T3.

RUN3 In the third run, we also applied the collapsed
document graphs, GC . For the temporal constraints
we apply the processing detailed in Section 5.

8 Results

8.1 Regular Slot Filling

The results of the Regular Slot Filling subtask have
been poor. Therefore, we tried to evaluate where our
losses have come from.

Candidate retrieval component After our empir-
ical evaluation, we expected to be able to retrieve
75% of the documents relevant to the task queries.
Comparing with the evaluation results, the figure
was comparable, but lower: 71.6%. The recall of
the IR module is low, and we are not addressing im-
portant issues, such as the possible ambiguity in the
entities of the query (see Table 3).

Information Extraction component Both the
precision and recall of our system were low, and
the KBP scores were lower than the values we ob-
tained in development. As we have seen, the quality
of the automatically labeled examples is poor, and
the noise introduced damages the performance of the
overall system. The training collection we obtain is
very disperse, as some of the slots contribute many
of the examples and other very few. For up to six
of the slot types, we did not extract positive training
examples, or very few, a problem we tried to circum-
vent by considering in training the supervised exam-
ples from previous editions of the task. This goes
against our self-supervised approach, and does not
push the scores very far up, either. Augmenting the
number of documents processed increases the per-
formance of the system, but not greatly, as the prob-
lem of sparse training is not overcome.

Size of the training set To evaluate the effect of
having more seeds, we have compared the number of
training examples available in training for the Reg-
ular Slot Filling subtask against the coverage of the
correct results in the response of the system. We de-
fine this coverage as the number of correct responses
that were extracted by the IE component, before se-
lecting from them the final response of the system.
We say a response is correct if it matches exactly the
response in the official evaluation key (this is a lower
bound for the number of correct responses). The
correlation coefficient between these two figures is
0.43; having a look at Figure 4 we see that some
slots behave differently, but that a larger number of

Supervised Semi-Supervised
Slot Number of Seeds Matches Number of Seeds Matches
org:city of headquarters 50 1 5608 4
org:country of headquarters 45 0 3856 5
org:founded 30 1 2191 0
org:parents 33 1 2912 4
org:stateorprovince of headquarters 36 0 2021 2
org:subsidiaries 100 1 320 0
per:age 52 5 1 0
per:city of birth 14 2 558 0
per:date of birth 12 1 59 0
per:employee of 84 2 756 8
per:location of residence 139 6 819 0
per:member of 49 4 1435 0
per:title 133 5 3031 3

Table 6: Correct matches using semi-supervised seeds (obtained from the KB automatically) or supervised seeds
(obtained from the evaluation keys from past editions of the task). For slots with at least one correct match.

examples tends to correspond with better results.

Supervised seeds against semi-supervised seeds
As noted in 6.3, we decided to merge our automati-
cally extracted seeds with a set of supervised seeds,
obtained from the keys of previous editions of the
task.

To evaluate the contribution of semi-supervised
and supervised seeds, we run the following exper-
iment, after the participation in the task. We used
a configuration of the system that is similar to the
one described in Section 6.4 for RUN2, although the
number of documents we have processed is larger.
We train the system only with the supervised seeds,
only with the semi-supervised seeds, and with both
sets of seeds together (as in our participation in the
task). We then checked the number of exact string
matches with the official evaluation response key.

Using the semi-supervised seeds, we obtained 26
matches with the key. Using the supervised seeds
only increased the number of matches to 31. In
the submission of RUN2, we had 37 exact string
matches.

The matches for each slot are differently dis-
tributed, as summarized in Table 6. With the super-
vised collection of seeds, which is smaller and bet-
ter balanced, we have few correct results but spread
evenly over the slots. With the poorly balanced
semi-supervised collection, we get more matches for
fewer slots5. This can be explained by the choice of

5We joined together the training for the
slots per:* of residence into a single slot

learning method, a SVM multi-class classifier that
divides the space of examples by cutting-planes.

It is interesting to note that some of the right
predictions with the supervised seeds are for slots
for which we have very few seeds in the semi-
supervised collection. Therefore, the number of cor-
rect results that it is possible to get with distant su-
pervision is similar to what it is possible to get with
supervised seeds.

Figure 4: For each slot, we plot the coverage (how many
values in the evaluation key were among the responses
of our system, before the final filtering step) against the
number of positive examples available in training.

Document representation From the Regular Slot
Filing official evaluation scores, we can observe that

per:location of residence.

System # Filled Precision Recall F1
LDC (manual) 532 0.7041 0.6131 0.6555
BLENDER2 1139 0.1749 0.3261 0.2277
BLENDER1 1108 0.1750 0.3173 0.2256
BLENDER3 1153 0.1642 0.3099 0.2147
IIRG1 317 0.2505 0.1300 0.1711
UNED2 156 0.2571 0.0657 0.1046
UNED1 165 0.2299 0.0620 0.0978
UNED3 156 0.2196 0.0561 0.0893
Stanford 12 5094 0.0207 0.01724 0.0369
Stanford 11 4315 0.0211 0.01492 0.0370
USFD20112 327 0.0099 0.0053 0.0069
USFD20113 126 0.0020 0.0004 0.0006

Table 7: System ID, number of filled responses of the
system, precision, recall and F measure.

collapsing the coreferent nodes has produced a slight
boost of performance, and that having the lexical in-
formation of the words around entity and value also
improved performance.

8.2 Temporal Slot Filling

The performance on relation extraction is an upper
bound for temporal anchoring, attainable if tempo-
ral anchoring is perfect. Thus, we also evaluate the
temporal anchoring performance as the percentage
the final system achieves with respect to the relation
extraction upper bound.

Results. We show in Table 7 results of all partici-
pants ranked by values of F1. The table contains in-
formation about the number of slots correctly filled
by each system as well as precision, recall and F1
values.

We can see that our results are low due to the
upper bound that error propagation in candidate re-
trieval and relation extraction imposes upon this
step: we have seen that our temporally anchoring
alone achives 69% of its upper bound. This value
corresponds to run UNED2 (whose way of extract-
ing temporal information could be considered as a
baseline for this task), showing its strength. The dif-
ference in performance with run UNED3 shows that
this baseline is difficult to beat by considering tem-
poral evidence inside the document content. There
is a reason for this. The temporal link mapping into
time intervals does not depend only on the type of
link, but also on the semantics of the text that ex-
presses the relation as we pointed out above. We

have to decide how to transform the link between re-
lation and temporal expression into a temporal inter-
val. Learning a model for this is a hard open research
problem that has a strong adversary in the baseline
proposed.

On the other hand, a comparison of runs UNED1
and UNED2, which only differ on the document
representation, shows us an slight improvement
in results when using collapsed coreferent nodes.
However, this observation is not kept when compar-
ing runs UNED1 and UNED3, which differs on
document representation and temporal anchoring.
This is due to the fact that the temporal anchoring
used for us as a baseline (employed in run UNED1)
is able to clearly outperform the more complex tem-
poral anchoring of run UNED3 despite the fact of
using a less proper representation.

Comparative Evaluation.
We have compared also our approach with the

other four participants at the KBP Temporal Slot
Filling Task 2011. As shown in column Filled of
Table 7, our approach returns less triples than other
systems, explaining the low recall values. However,
our system achieves the highest precision for the
complete task of temporally anchored relation ex-
traction. Despite low recall, our system obtains the
third best F1 value. This is a very promising result,
since several directions can be explored to consider
more candidates and increase recall. Table 7 also
includes a row for the scores for LDC’s manual an-
notation, that can be considered an upperbound for
automatic systems.

9 Conclusions and future work

There is room for improvement for our system, as
we could not tune each of the system components.
Nevertheless, we can conclude with the following
observations.

We hypothesized that distant learning would be
enough for addressing the task of filling all the KBP
slots. We have observed, nevertheless, a few short-
comings of this approach. The first is that the pro-
cess of automatically extracting seeds from an in-
fobox KB such as the one provided by the organi-
zation is complex. The ambiguities in the defini-
tion of the infobox attributes, and its far from per-
fect correspondence with the target slots have to be

taken care of. Otherwise, the quality of the seeds
obtained is worse than that of manually supervised
seeds. Better quality seeds could be found substi-
tuting the provided initial KB with a cleaner input
KB. A better mapping from the resource to the target
slot types would allow having a comparable num-
ber of seeds for each slot, and subsequently, a well
balanced dataset. We have observed that the having
more training examples has an effect in the perfor-
mance, but that it is less important than the effect of
having good seeds.

We leave for future work the problem of compar-
ing the approach of automatically obtaining seeds
from a Wikipedia based resource against a boot-
strapping method that would start from the manually
supervised seeds.

For the temporal anchoring sub-problem, we have
demonstrated the strength of the document creation
time as a temporal signal. It is possible to achieve
a performance of 69% of the upper-bound imposed
by relation extraction by assuming that any relation
mentioned in a document held at the document cre-
ation time (there is a within link between the rela-
tional fact and the document creation time). This
baseline has proved stronger than extracting and an-
alyzing the temporal expressions present in the doc-
ument content.

We expected a larger impact of the representation
in the performance of the system. A future line of re-
search is to better exploit the document representa-
tion for training, instead of our simple binary feature
generation process.

Acknowledgments

This work has been partially supported by the Span-
ish Ministry of Science and Innovation, through
the project Holopedia (TIN2010-21128-C02), and
the Regional Government of Madrid, through the
project MA2VICMR (S2009/TIC1542).

References
Eneko Agirre, Angel X. Chang, Daniel S. Jurafsky,

Christopher D. Manning, Valentin I. Spitkovsky, and
Eric Yeh. 2009. Stanford-UBC at TAC-KBP. In TAC
2009, November.

Jenny Rose Finkel, Trond Grenager, and Christopher
Manning. 2005. Incorporating non-local information

into information extraction systems by gibbs sampling.
In ACL 2005, pages 363–370.

Heng Ji and Ralph Grishman. 2011. Knowledge base
population: Successful approaches and challenges. In
ACL HLT 2011, pages 1148–1158.

Thorsten Joachims, Thomas Finley, and Chun-Nam Yu.
2009. Cutting-plane training of structural svms. Ma-
chine Learning, 77:27–59.

T. Joachims. 2002. Learning to Classify Text Using Sup-
port Vector Machines – Methods, Theory, and Algo-
rithms. Kluwer/Springer.

Dan Klein and Christopher D. Manning. 2003. Accurate
unlexicalized parsing. In ACL 2003, pages 423–430.

Heeyoung Lee, Yves Peirsman, Angel Chang, Nathanael
Chambers, Mihai Surdeanu, and Dan Jurafsky. 2011.
Stanford’s multi-pass sieve coreference resolution sys-
tem at the conll-2011 shared task. In CoNLL-2011.

Mike Mintz, Steven Bills, Rion Snow, and Dan Juraf-
sky. 2009. Distant supervision for relation extraction
without labeled data. In ACL 2009, pages 1003–1011,
Stroudsburg, PA, USA. Association for Computational
Linguistics.

James Pustejovsky, Jessica Littman, and Roser Saurı́.
2007. Arguments in TimeML: Events and entities. In
Annotating, Extracting and Reasoning about Time and
Events, LNCS, chapter 8, pages 107–126.

Karthik Raghunathan, Heeyoung Lee, Sudarshan Ran-
garajan, Nathanael Chambers, Mihai Surdeanu, Dan
Jurafsky, and Christopher Manning. 2010. A multi-
pass sieve for coreference resolution. In EMNLP-
2010.

Sebastian Riedel, Limin Yao, and Andrew McCallum.
2010. Modeling relations and their mentions with-
out labeled text. In José Balcázar, Francesco Bonchi,
Aristides Gionis, and Michèle Sebag, editors, Machine
Learning and Knowledge Discovery in Databases,
volume 6323 of LNCS, pages 148–163. Springer
Berlin / Heidelberg.

Mihai Surdeanu and Massimiliano Ciaramita. 2007.
Robust information extraction with perceptrons. In
ACE07, March.

Mihai Surdeanu, David McClosky, Julie Tibshirani, John
Bauer, Angel X. Chang, Valentin I. Spitkovsky, and
Christopher D. Manning. 2010. A simple distant su-
pervision approach for the tac-kbp slot filling task. In
TAC 2010, November.

Marc Verhagen, Inderjeet Mani, Roser Sauri, Robert
Knippen, Seok Bae Jang, Jessica Littman, Anna
Rumshisky, John Phillips, and James Pustejovsky.
2005. Automating temporal annotation with TARSQI.
In ACLdemo’05.

