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Abstract
Many evaluations of large language models (LLMs) in text an-
notation focus primarily on the correctness of the output, typ-
ically comparing model-generated labels to human-annotated
“ground truth” using standard performance metrics. In con-
trast, our study moves beyond effectiveness alone. We aim to
explore how labeling decisions–by both humans and LLMs–
can be statistically evaluated across individuals. Rather than
treating LLMs purely as annotation systems, we approach
LLMs as an alternative annotation mechanism that may be
capable of mimicking the subjective judgments made by hu-
mans. To assess this, we develop a statistical evaluationmethod
based on Krippendorff’s 𝛼 , paired bootstrapping, and the Two
One-Sided t-Tests (TOST) equivalence test procedure. This
evaluation method tests whether an LLM can blend into a
group of human annotators without being distinguishable.

We apply this approach to two datasets–MovieLens 100K
and PolitiFact–and find that the LLM is statistically indistin-
guishable from a human annotator in the former (𝑝 = 0.004),
but not in the latter (𝑝 = 0.155), highlighting task-dependent
differences. It also enables early evaluation on a small sam-
ple of human data to inform whether LLMs are suitable for
large-scale annotation in a given application.
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1 Introduction
In his landmark 1950 paper, Alan Turing proposed a criterion
for machine intelligence: if a machine can engage in conversa-
tion such that a human evaluator cannot reliably distinguish
it from another human. The machine can be said to exhibit
intelligent behaviour [49]. This formulation–now known as
the Turing Test–shifts the focus from how a machine works
inside to how it behaves on the outside.

In this work, we build on the spirit of the Turing Test. How-
ever, we focus on a more domain-specific setting: text annota-
tion tasks. Instead of testing a machine through open-ended
conversations, we ask a simpler question. Can an LLM act
like a human annotator? Specifically, can its output be statisti-
cally indistinguishable from that of people in a multi-person
annotation task?

While LLMs have shown strong performance on many
general-purpose classification tasks [35], their role in subjec-
tive or domain-specific annotation settings remains unclear. In
information retrieval contexts—such as document relevance as-
sessment, intent classification, or stance detection—annotation
often involves subtle, context-dependent judgments [17, 28,
40]. These applications continue to rely on traditional clas-
sifiers trained on human-labeled data, particularly where in-
terpretability, auditability, or fairness are required [29, 30]. If
LLMs can produce labels that are indistinguishable from those
generated by humans in such scenarios, they offer a path to
reducing annotation costs while preserving human-like in-
terpretive behavior. This makes it important to understand
whether LLMs can label correctly and effectively participate
in the human annotation process used to train these models.

Text classification is widely used for natural language pro-
cessing (NLP) tasks, such as news categorization, sentiment
analysis, and subject labeling [15, 45]. It involves assigning
labels to textual elements such as sentences, questions, para-
graphs, or entire documents. Some of the classifications require
human labeling to train and test the machine learning models.
Annotations act as the ground truth against which models are
tested, refined, and advanced.
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Annotation tasks often depend on subjective human judg-
ment rather than a single, objective truth. For example, in
relevance assessments, people may interpret the same content
differently, and their judgments can change over time [17].
So, the aim is not always to identify the “correct” label, but to
understand how labeling decisions emerge across different in-
dividuals. LLMs are increasingly good at producing convincing
outputs. However, it is still unclear whether their responses
reflect human judgment, especially in the absence of evidence
that their outputs are rooted in actual human experience [17].

Traditional human annotation can be constrained by cost
and consistency [12]. Recent research has compared the qual-
ity of annotations by LLM and human in use of NLP appli-
cation [35]. Also, study has investigated using LLMs to help
or even replace human annotators on some tasks [1], usu-
ally by comparing their agreement with human results us-
ing measures like Krippendorff’s 𝛼 or Cohen’s kappa. Most
of these studies treat the LLM as a single, standalone sys-
tem and check how well it matches a human-created “ground
truth” [1, 6, 14, 30, 51].

We introduce an evaluation method for LLMs based on
group dynamics. Rather than evaluating a model in isolation,
we assess whether it can substitute a human within an annota-
tion group without significantly altering the group’s behavior.
An LLM judgment is deemed successful if the LLM’s presence
is statistically indistinguishable from a human’s presence.

This work treats LLMs not just as tools for text classification,
but as participants that can imitate the subjective—and some-
times inconsistent—judgments made by humans.We introduce
a practical method based Krippendorff’s 𝛼 , bootstrapping and
TOST to test whether an LLM can blend into a group of hu-
man annotators without being identified. This approach only
requires a small number of annotation items and functions as
a domain-specific take on the Turing Test. It supports early-
stage evaluation on a small sample to determine the suitability
of LLMs for large-scale annotation. We apply it to a real-world
classification task and examine the results.

Our key contributions are:
• We propose an evaluation methodology that statisti-
cally tests whether an LLM can substitute for a human
annotator in multi-annotator text classification tasks.

• We demonstrate the application of our methodology on
two datasets—MovieLens 100K and PolitiFact—showing
that the LLM is statistically indistinguishable from hu-
man annotators in the former (𝑝 = 0.004) but not in the
latter (𝑝 = 0.155), revealing important task-dependent
differences.

• We release a dataset containing LLM annotations along-
side human annotations for a multi-annotator task.
The dataset is publicly available at: https://github.com/
peanutH/LLM-evaluation.

2 Related Work
2.1 Text Classification
Text classification is a core task in NLP. It helps organize un-
structured text from sources like messages, documents, and

websites. To make sense of all this text, researchers and de-
velopers use models that automatically classify text into cat-
egories like topic, sentiment, or author identity. Siino et al.
[45] provide an overview of common datasets used in these
tasks, ranging from author profiling and news categorization
to sentiment analysis.

Labeled data is essential for building and testing models,
with human annotations serving as the “ground truth” [35, 45].
Manual labeling is often costly, slow, and inconsistent, making
automation preferable. Models are typically trained on a subset
of labeled data and evaluated by comparing their predictions
to human annotations.

Recently, LLMs have shown impressive performance across
many NLP tasks [8], raising the possibility of replacing tradi-
tional supervised models or even human annotators. However,
this shift is far from complete [34].

Many domain specific real-world applications such as med-
ical coding, legal triage, or sentiment analysis continue to rely
on traditional classifiers trained on large datasets labeled by
experts. This is because LLMs alone often lack the nuanced
understanding required for these tasks. As a result, substan-
tial human annotation remains essential for developing and
validating reliable models. In areas where complex human
judgment is critical, direct human involvement remains indis-
pensable Christoforou et al. [9].

2.2 Human Annotation and Generative AI
Human annotation comes with challenges, most notably cost
and consistency [12]. Text classification models rely on large
amounts of labeled data, and hiring workers to do all the la-
beling is not always feasible. That is why crowdsourcing has
become a solution. Platforms that connect requesters with
crowd workers make it possible to outsource labeling tasks
like relevance judgments, sentiment tagging, and topic catego-
rization to non-experts [2, 28]. This approach has been crucial
in building datasets needed to train machine learning models.

Crowdsourcing was once seen as flexible and empowering
for workers. However, it is often criticized as invisible, low-
paid labor that supports modern AI behind the scenes.

Given these concerns, researchers have started asking: Can
generative AI (GenAI), especially LLMs, step in and take over
some of these annotation tasks? Some early findings suggest
that LLMs tend to do well on straightforward tasks like sum-
marization or basic sentiment analysis [9]. But when the task
requires more nuanced judgment—like interpreting sarcasm,
ambiguity, or subtle context—human annotators still outper-
form the machines [35].

So, the real question is not just whether GenAI can get the
“righ” answer. It is whether its decisions reflect the kinds of
judgments humans would make, especially in cases where
there is no single correct label. One study [17] looked at how
well LLMs could handle relevance judgments, a task where
subjectivity plays a big role. While LLMs showed some abil-
ity to mimic human responses, they were not consistent or
nuanced enough to fully replace human workers.

https://github.com/peanutH/LLM-evaluation
https://github.com/peanutH/LLM-evaluation
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That is why we are developing a new evaluation framework
to better understand whether LLM-generated annotations can
be mistaken for human ones, not just in terms of correctness
but in how closely they match human reasoning and subjec-
tivity.

2.3 Existing Evaluation Method
Traditional evaluation methods for generative AI in annota-
tion tasks typically benchmark AI-generated outputs against
human annotations using metrics such as accuracy, precision,
Kendall’s 𝜏 , or inter-annotator agreement scores like Cohen’s
kappa and Krippendorff’s 𝛼 [1, 17, 51]. The approaches used
in existing studies treat generative AI as a system and eval-
uate their output against the overall consensus of a crowd.
In doing so, they prioritize alignment with collective human
judgments, rather than examining how closely AI aligns with
the characteristics of individual annotators.

Although these evaluations show whether generative mod-
els can produce generally accurate labels, they often miss how
humans actually annotate. In real tasks—especially subjective
ones like relevance, sentiment, ormoderation—judgments vary
with expertise, interpretation, or background [32]. Treating
this diversity as a single “gold standard” can overstate model
capability [17].

Correlation metrics like Kendall’s 𝜏 [25] are good for check-
ing if LLM rankings match system-level outcomes. But they
don’t show how well LLMs fit into the social side of annota-
tion, where disagreement and variation are normal. Measures
like Cohen’s 𝜅 [10] and Krippendorff’s 𝛼 [26] better capture
consistency, but they still treat LLMs as outsiders compared to
human annotators, rather than as active collaborators in the
process.

This framing can lead to an inflated sense of how inter-
changeable LLMs are with humans, particularly in complex or
cognitively demanding annotation settings [36]. As prior stud-
ies have noted, even as LLMs improve at mimicking human
language and surface-level judgment, it remains a significant
leap to assume their outputs are equivalent to human rea-
soning without verification. At present, there is no definitive
evidence that LLM-generated judgments are grounded in hu-
man experience, intuition, or context.

This raises an important question: if an LLM’s annotation
looks like a human’s, does that mean it is truly the same—or are
we missing deeper differences in how judgments are made?
In many tasks, there is no single “correct” answer; human
judgments are often subjective, context-dependent, and incon-
sistent over time [5, 17].

To better reflect this, we propose a new approach: instead of
checking if an LLM agrees with the crowd, we ask whether it
can blend into the crowd—becoming statistically indistinguish-
able from human annotators, and that we call it a “Statistical
Turing Test”.

2.4 Human Judgment
Before comparing LLMs to humans, it is important to first
understand the nature of human judgment. Human judgment

is commonly modeled as a cognitive process that aligns well
with linear models of cue integration [19, 22]. In such models,
people make decisions based on a set of cues, each weighted
differently depending on its perceived importance.

Brehmer et al. [7] noted that linear models tend to fit hu-
man judgments quite well. Even when nonlinear or configural
components are present, they typically account for only a
small portion of the variance, and their generalizability across
tasks is uncertain. Additionally, human judgments are often
inconsistent, with the level of consistency varying according
to the predictability of the task. There are also substantial
inter-individual differences in how people weigh signals, even
among individuals with considerable experience on the task.

This inconsistency can be attributed to the variability in
cue weights applied across different tasks. Prior research has
shown that judgment consistency tends to decrease as the
number of cues increases [16]. In contrast, LLMs often display
greater consistency in annotation tasks [17], likely due to more
stable internal representations of cues and weights.

To evaluate whether the LLM’s cue integration falls within
an acceptable threshold of variability, we use inter-annotator
agreement (IAA) as a proxy for measuring consistency in
annotation judgments.

2.5 Inter-Annotator Agreement (IAA)
Researchers who rely on hand-labeled data–where items are
manually labeled with categories for empirical analysis or
model development–must demonstrate that the labeling pro-
cess is reliable [4]. A fundamental assumption in annotation
methodology is that the data are considered reliable when
multiple annotators agree on the labels assigned, to a degree
appropriate for the objectives of the study [11, 27]. Consistent
agreement among annotators suggests that they share a com-
mon understanding of the annotation guidelines, and thus can
be expected to apply those guidelines consistently.

IAA is a standardmetric used to quantify this consistency. In
multi-people annotation settings, annotators may have varied
backgrounds and limited domain expertise. IAA helps deter-
mine whether labels are trustworthy and whether a task is
clearly defined or inherently subjective. High agreement indi-
cates clear instructions and straightforward data, while low
agreement may reveal task ambiguity, multiple valid interpre-
tations, or inconsistent annotator behavior.

Beyond assessing label quality, IAA also serves as a diagnos-
tic tool for identifying issues in the annotation process. By ex-
amining patterns of agreement and disagreement, researchers
can uncover sources of ambiguity, identify annotator bias, and
refine the guidelines. One of the most used IAA measure is
Krippendorff’s 𝛼 .

2.6 Krippendorff’s 𝛼
Krippendorff’s 𝛼 is a robust and widely-used reliability co-
efficient for measuring inter-annotator agreement, particu-
larly when annotations are incomplete, involve more than two
coders, or span different levels of measurement (nominal, ordi-
nal, interval, etc.) [26]. Unlike simpler metrics such as Cohen’s
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Figure 1: Our evaluation methodology workflow

kappa, which assume fixed pairwise comparisons, Krippen-
dorff’s 𝛼 can accommodate complex and realistic annotation
setups—including crowdsourced data with missing entries or
unequal contributions from annotators.

Krippendorff’s 𝛼 quantifies the extent to which observed
disagreement differs from what would be expected by chance,
with values ranging from 1 (perfect agreement) to 0 (chance-
level agreement) and negative values indicating systematic
disagreement. Importantly, Krippendorff’s 𝛼 is sensitive not
only to consistency but also to the nature of the scale being
used, making it well-suited for subjective or ambiguous tasks
where subtle distinctions matter.

In our evaluation framework, we employ Krippendorff’s 𝛼
to assess whether annotations produced by an LLM achieve a
comparable level of agreement with human annotators as hu-
mans achieve with one another. Rather than simply comparing
the LLM to a gold standard, we integrate it into the annotator
pool and compute Krippendorff’s 𝛼 across the mixed group.

3 Methodology
Building on the idea discussed in Section 2.5, consistent label-
ing by multiple human annotators suggests that they share
a common understanding of the annotation guidelines and
apply them reliably [4]. Inspired by the logic of the Turing
Test [49], we propose a methodology that uses inter-annotator
agreement to evaluate whether a large language model (LLM)
can function as an individual annotator—that is, whether it can
serve as a substitute for a human in the annotation process.

In this section, we outline the methodology used to evaluate
whether an LLM can effectively substitute for a human anno-
tator by examining changes in inter-annotator agreement, the
methodology workflow is shown in Figure 1. We first intro-
duce the rationale behind this evaluation (Section 3.1.1). We
then detail the protocol for substituting a human annotator
with an LLM (Section 3.1.2), followed by the approach for mea-
suring how agreement levels vary due to these substitutions
(Section 3.1.3). Next, we describe our statistical procedures
for estimating variability in agreement scores using a paired
bootstrap method (Section 3.1.4) and establishing equivalence
through Two One-Sided Tests (TOST) (Section 3.2). Finally, we
discuss practical considerations for determining appropriate
sample sizes and annotator group sizes to ensure robust and
reliable results (Section 3.3).

3.1 LLM Substitution Protocol
3.1.1 Motivation: Substituting Human Annotators. Krippen-
dorff’s 𝛼 measures the extent of agreement among annotators
using the formula: 𝛼 = 1 − 𝐷𝑜

𝐷𝑒
, where 𝐷𝑜 is the observed

disagreement and 𝐷𝑒 is the expected disagreement by chance.

Figure 2: LLM substitution

To understand how 𝛼 behaves under substitution, consider
a group of three annotators-A, B, and C—whose annotations
yield an agreement score 𝛼1. Now imagine replacing annotator
A with a new annotator E and computing a new 𝛼 value, 𝛼2.
If 𝛼1 ≈ 𝛼2, this suggests that annotator E exhibits a similar
consistency pattern to annotator A for the same task. Repeat-
ing this comparison with different annotators and observing
small differences (i.e., |𝛼1 − 𝛼2 | within a tolerable range) may
indicate that the consistency patterns among the annotators
are comparable.

This idea motivates our approach: if an LLM can replace
a human annotator without significantly altering the inter-
annotator agreement, it may be acting as a reasonable substi-
tute.

3.1.2 Protocol: Replacing Annotators with an LLM. To formal-
ize this idea, we consider a group of 𝑖 human annotators who
have independently labeled a shared set of 𝑛 items. We then
simulate the substitution process by replacing one human
annotator at a time with the LLM. This results in 𝑖 modified
annotation groups—each with 𝑖 − 1 humans and one LLM.

In each iteration, we remove the annotations from one hu-
man (e.g., annotator A) and replace them with labels generated
by the LLM for the same items. The LLM effectively stands in
for the removed annotator. This process is repeated for all 𝑖
human annotators. The substitution progression is illustrated
in Figure 2.

In cases where the original annotator did not label all items,
we only substitute the entries that exist—i.e., the LLM only
replaces the ratings for items the original annotator labeled.
Items left blank by the original annotator remain blank.

3.1.3 Measuring Agreement Across Substitutions. In complex
annotation tasks involving comprehension, reasoning, or sub-
tle interpretation, perfect agreement is unlikely—even among
humans. We therefore don’t expect the LLM to match human
annotations exactly. Instead, we evaluate whether the LLM
can match the overall consistency of human annotators.

We begin by computing Krippendorff’s 𝛼 for the original
group of 𝑖 human annotators. We denote this baseline agree-
ment as 𝛼1 = Krippendorff’s 𝛼 for human group. Next, we
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compute 𝛼 for each of the 𝑖 modified groups where one hu-
man annotator is replaced by the LLM. These are denoted as
𝛼 𝑗 = Krippendorff’s 𝛼 for substitution group 𝑗 = 2, . . . , 𝑖 + 1.

By comparing the LLM-substituted scores 𝛼 𝑗 with the orig-
inal human score 𝛼1, we can observe how agreement changes
when the LLM replaces a human annotator in the annotation
group.

3.1.4 Paired Bootstrap for Variability Estimation. To assess
the variability of agreement scores and ensure that observed
differences are statistically meaningful, we apply the paired
bootstrap method inspired by Krippendorff [26] Prior work
has shown that analyzing a subset comprising just 40% of
the full dataset can provide a reliable estimates of inter-rater
agreement [3]. Following this insight, we apply bootstrap sam-
pling [48] to resample the annotation data.

Specifically, we perfrom𝐵 bootstrap iterations (eg.,𝐵 = 300),
where in each iteration we sample 𝑁 items with repalcement
from the full set of 𝑛 annotated items. For each sample, we
compute the Krippendorff’s 𝛼 .

Let 𝛼1 =

{
𝛼
(1)
1 , 𝛼

(2)
1 , . . . , 𝛼

(𝐵)
1

}
represent the 𝛼 values com-

puted for the original human group across the 𝐵 bootstrap
samples. For each LLM-substituted group 𝑗 = 2, . . . , 𝑖 + 1,
we similarly compute a distribution of alpha values: 𝛼 𝑗 ={
𝛼
(1)
𝑗

, 𝛼
(2)
𝑗

, . . . , 𝛼
(𝐵)
𝑗

}
.

To ensure fair comparison, we use the same bootstrap sam-
ples (i.e., same sampled items) across all groups in each itera-
tion. This paired bootstrap procedure allows us to compare the
variability in agreement across human and LLM-substituted
groups under consistent sampling conditions.

3.2 Equivalence Testing with TOST
We then summarize the results by computing the mean agree-
ment score for the original human–human annotations:

𝑥2 =
1
𝐵

𝐵∑︁
𝑓 =1

𝛼
(𝑓 )
1

and the average agreement score across all LLM–human
replacement cases:

𝑥1 =
1

𝑖 · 𝐵

𝑖+1∑︁
𝑗=2

𝐵∑︁
𝑓 =1

𝛼
(𝑓 )
𝑗

Here, 𝑥1 represents the overall mean of 𝛼2, 𝛼3, . . . , 𝛼𝑖+1, cap-
turing average agreement when one human is replaced by the
LLM. 𝑥2 represents the baseline agreement among all-human
groups.

These means serve as the basis for an equivalence test using
the Two One-Sided t-Tests (TOST) procedure [39, 43, 46]. The
goal is to determine whether the difference |𝑥1−𝑥2 | falls within
a pre-defined equivalence margin Δequiv, which indicates a
practically negligible difference in reliability.

We compute the two TOST statistics as follows:

𝑡1 =
(𝑥1 − 𝑥2 − Δequiv)

𝑠

√︃
1
𝑛1

+ 1
𝑛2

and 𝑡2 =
(𝑥1 − 𝑥2 + Δequiv)

𝑠

√︃
1
𝑛1

+ 1
𝑛2

where 𝑠 is the pooled standard deviation of the two sets
of𝛼scores, and 𝐵1, 𝐵2 are the sample sizes of the two groups.

The null hypothesis is that the difference exceeds the equiv-
alence margin: 𝐻0 : |𝑥1 − 𝑥2 | > Δequiv. We reject 𝐻0 if both 𝑡1
and 𝑡2 fall within the critical region for their respective one-
sided tests, thereby concluding that the observed difference is
within an acceptable range of equivalence.

3.2.1 Equivalence Margin Definition. The equivalence margin
Δequiv is a threshold below which the difference is consid-
ered negligible. We estimate this margin empirically based
on natural variability among human annotators: Δequiv =

(𝛼𝑎 − 𝛼𝑏 ) · fraction, where:
• 𝛼𝑎 is Krippendorff’s𝛼 calculated from a group of human
annotators (e.g., annotators 1–3),

• 𝛼𝑏 is Krippendorff’s 𝛼 from another independent group
(e.g., annotators 4–6),

• Both groups annotate the same items using the same
guidelines,

• 𝛼𝑎 − 𝛼𝑏 reflects typical human-to-human variability,
• fraction is a scaling factor (e.g., 0.5 or 0.8) that con-
trols how strict the equivalence test is — smaller values
require the LLM to match humans more closely.

By grounding the margin in actual human variability, this
approachmakes the equivalence test realistic and interpretable.
The margin reflects what is already tolerated in human-human
comparisons, rather than relying on arbitrary cut-offs.

3.3 Sample Size and Annotator Group Size
3.3.1 Dataset Size. To determine an appropriate minimum
bootstrap sample size for calculating Krippendorff’s alpha,
we follow Bloch and Kraemer’s formula [27], which takes
into account the desired minimum agreement level 𝛼min, a
confidence level 𝑧, and the probability of observing agreement
by chance 𝑝𝑐 :

𝑁 = 𝑧2
(
(1 + 𝛼min) (3 − 𝛼min)

4(1 − 𝛼min)𝑝𝑐 (1 − 𝑝𝑐 )

)
Following the paired bootstrap procedure outlined in Sec-

tion 3.1.4, we randomly sample N items from the dataset in
each bootstrap iteration. Using 𝑧 = 0.95, 𝛼min = 0.8, and
𝑝𝑐 = 0.17, we calculate the minimum required size of each
bootstrap sample to be 𝑁 = 32. As noted in Section 3.1.4, a
bootstrap sample comprising 40% of the full dataset is sufficient
to yield a reliable estimate of interrater agreement. This im-
plies that the full dataset should contain at least 𝑛 = 2.5𝑁 = 80
items.

3.3.2 Annotator Group Size. We analyze how Krippendorff’s
𝛼 changes when one human annotator is replaced by an LLM.
Let 𝑖 be the number of annotators, 𝑛 the number of items, and
ℓ𝑎𝑘 the label from annotator 𝑎 on item 𝑘 . As mentioned in
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Section 2.6, Krippendorff’s 𝛼 is defined as 𝛼 = 1 − 𝐷𝑜

𝐷𝑒
, where

𝐷𝑜 is the average observed pairwise disagreement and 𝐷𝑒 is
the expected disagreement under random labeling based on
marginal label distributions.

Change in observed disagreement. When coder 𝑟 is re-
placed by an LLM that assigns labels 𝐿𝑘 , the change in 𝐷𝑜

becomes:

Δ𝐷𝑜 =
2
𝑛 𝑖

𝑛∑︁
𝑘=1

(
𝑑LLM,𝑘 − 𝑑𝑟,𝑘

)
,

where 𝑑LLM,𝑘 and 𝑑𝑟,𝑘 denote the average disagreement be-
tween the LLM (or original coder 𝑟 ) and all other annotators
on item 𝑘 .

Change in expected disagreement. Substituting in the LLM
slightly alters themarginal distribution of labels, shifting 𝑝𝑐 ↦→
𝑝′𝑐 = 𝑝𝑐 + Δ𝑝𝑐 . The first-order change in 𝐷𝑒 is then:

Δ𝐷𝑒 ≈ −2
∑︁
𝑐

𝑝𝑐Δ𝑝𝑐 .

Total change in 𝛼 . Using a first-order Taylor expansion of 𝛼 ,
we obtain:

Δ𝛼 ≈ − 1
𝐷𝑒

Δ𝐷𝑜 + 𝐷𝑜

𝐷2
𝑒

Δ𝐷𝑒 .

Substituting the expressions above yields:

Δ𝛼 ≈ − 2
𝑛 𝑖 𝐷𝑒

𝑛∑︁
𝑘=1

(
𝑑LLM,𝑘 − 𝑑𝑟,𝑘

)
− 2𝐷𝑜

𝐷2
𝑒

∑︁
𝑐

𝑝𝑐 Δ𝑝𝑐 .

The derivation 1 shows that Δ𝛼 , resulting from substituting
one human annotator with an LLM, is inversely proportional
to the number of annotators 𝑖 (i.e., Δ𝛼 ∝ 1

𝑖 ). This implies that
as the number of annotators increases, the impact of a single
substitution on 𝛼 becomes smaller. To select an appropriate
group size, we identify the elbow point on the curve of Δ𝛼
versus the number of annotators, where the rate of change
drops sharply. We apply the L-method [44] to detect this point
by fitting two lines to the curve—one before and one after each
candidate split—and choosing the split that minimizes the total
fitting error. This method captures the transition from rapid
to gradual change.

4 Experimental Evaluation
To validate our evaluation method, we designed an experimen-
tal workflow, illustrated in Figure 3. Since our experiments are
conducted on existing datasets, we follow the corresponding
branch of the workflow.
1Full derivation can be found in https://github.com/peanutH/LLM-evaluation

Table 1: Datasets considered for evaluation.

Dataset Domain # Items
MovieLens 100K [20] Movie ratings 1 682
WebCrowd25k [28] IR relevance ≈4 500
TREC-8 Re-assessments [41] IR relevance 4 269
Familiarity–QuerySpec [21] Query specificity classification 83
MBIC [47] Media bias ≈2 600
CoQA [38] Conversational QA 8 000
POPQUORN [37] Offensive–QA ≈5 500
D3CODE [33] Cross-cultural offensiveness detection ≈4 500
CrowdsourcingTruthfulness–PolitiFact [42] Misinformation – Veracity classification 120
HateXplain [31] Hate speech detection ≈20 000
CODA-19 [23] COVID-19 abstract section labeling 10 966

4.1 Dataset
We compiled a list of publicly available datasets that provide
multiple annotations per item along with identifiable annota-
tor IDs, enabling us to trace which individual labeled each item
and to perform annotator-level substitutions. These datasets
are summarized in Table 1.

To fit our evaluation experiments, we filtered the datasets
using a set of selection criteria defined by our evaluation
methodology. The code for this filtering process is available.2.
Specifically, we required that the dataset contain two disjoint
groups of annotators, each of size 𝑖 , such that there are at least
80 items, with each item annotated by at least two annotators
from each group. After data filtering, two datasets satisfy our
criteria: MovieLens 100K [20] and PolitiFact [42].

The MovieLens 100K dataset, collected by the GroupLens
Research Project at the University of Minnesota [20], contains
100,000 movie ratings (on a 1–5 scale) from 943 users across
1,682 movies. Each user rated at least 20 movies. The dataset
also includes basic demographic information about the users,
such as age, gender, occupation, and ZIP code.

The original PolitiFact dataset collected by Wang [50] con-
tains 12,000 statements produced by U.S. politicians, each state-
ment is labeled by an expert judge on a six-level scale for the
statement’s truthfulness. Roitero et al. [42] selected 120 state-
ments, 20 for each truth level, related to COVID-19 from the
original PolitiFact dataset. Then, workers are recruited from
the Amazon Mechanical Turk platform to annotate each state-
ment. Overall, each statement was annotated by 10 workers
over three different scales: three-level, six-level, one-hundred
level. In this work, we use the three-level dataset.

To obtain the LLM annotations, we used GPT-4o mini to
annotate the same set of items selected for this experiment, as
described in Section 4.2. Below is our LLM prompt for gener-
ating annotations for the MovieLens dataset3:
--SYSTEM--
You are an average movie watcher. Rate each movie
from 1 to 5 based on how much you liked it overall.
Consider the story, acting, and overall enjoyment.

--USER--
Respond with a list of ratings, one for each movie,
in the same order as presented. Only include the

2Our filtering code can be found in https://github.com/peanutH/LLM-evaluation
3Our LLM prompts and generated annotations available at https://github.com/
peanutH/LLM-evaluation

https://github.com/peanutH/LLM-evaluation
https://github.com/peanutH/LLM-evaluation
https://github.com/peanutH/LLM-evaluation
https://github.com/peanutH/LLM-evaluation
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Figure 4: 𝑝-values obtained for the MovieLens 100K
dataset for various value of 𝑖, the number of annota-
tors in the group.
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Figure 5: 𝑝-values obtained for the MovieLens 100K
dataset for various value of 𝐵, the number of bootstrap
iterations.

numeric ratings and nothing else.

Here are the movies for you to rate:
{list_of_movies}

The prompts were designed to instruct the LLM to follow
the same annotation guidelines provided to human annotators.

4.2 Data Selection
MovieLens 100k. For evaluation, we selected 38 coders split
into two groups of 19 coders each: We used the elbow point
findingmethod detailed in Section 3.3 to determine the optimal
number of annotators in a group. As shown in Figure 4, this
point was at 19 annotators per group. We divided the coders
into two groups:

• Group A: Human1, to Human19
• Group B: Human20 to Human38

CrowdsourcingTruthfulness–PolitiFact. We selected 86
coders for the evaluation—the minimum number that could be
filtered from the dataset while still satisfying our evaluation
criteria. The coders were divided evenly into two groups:

• Group A: Human1 to Human43
• Group B: Human44 to Human86
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Figure 6: 𝑝-values obtained for the PolitiFact dataset for
various value of 𝐵, the number of bootstrap iterations.

This grouping enables the calculation of the equivalence
margin (see Section 3.2.1). To satisfy the requirements for
applying Krippendorff’s 𝛼 that each item must be annotated
by at least two coders within a group, and each coder must
annotate at least one item [27], we filtered a subset of 100 items
from the MovieLens 100k dataset and the PolitiFact dataset,
each annotated by the selected coders. This meets the minimal
number of items discussed in Section 3.3.

4.3 LLM Substitution Evaluation
We evaluated whether LLMs could substitute for human an-
notators using the protocol introduced in Section 3.1. In each
trial, we replaced one human coder at a time from Group A
with an LLM, and computed Krippendorff’s 𝛼 for the resulting
group.

To assess variability and statistical significance, we ap-
plied the paired bootstrap procedure described in Section 3.1.4.
We tested across multiple bootstrap sample sizes, with 𝐵 ∈
{50, 100, . . . , 500}. For each value of 𝐵, we repeated the substi-
tution experiment 10 times. Each repetition involved generat-
ing 𝐵 bootstrap samples of 40 items per iteration, computing
agreement scores, and performing the Two One-Sided t-Test
(TOST) as described in Section 3.2.

For each value of 𝐵, we report the mean and standard de-
viation over the 10 trials for the two p-values from the TOST
procedure (𝑝1 and 𝑝2).

We also conducted a control experiment in which human
annotations were replaced with randomly generated labels,
rather than LLM-generated ones. This allowed us to assess
how random substitution affects inter-rater agreement and to
compare its impact against that of LLM substitution.

4.4 Result
Equivalence Testing Outcomes. We assessed whether LLM-
substituted annotations were statistically equivalent to hu-
man annotations across varying bootstrap sample sizes 𝐵. As
shown in Figure 5 and Figure 6, the p-values exhibit different
behaviors across datasets: onMovieLens 100K, p-values tend
to decrease with larger 𝐵, indicating increased stability; on
PolitiFact, no consistent pattern emerges.
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Table 2: TOST result (𝜇 ± 𝜎) for two datasets experiment for 𝐵 = 300

Dataset Margin Human 𝛼 LLM 𝛼 Random 𝛼 LLM 𝑝1 LLM 𝑝2 Random 𝑝1 Random 𝑝2

MovieLens 100K 0.025 ± 0.014 0.199 ± 0.001 0.199 ± 0.001 0.164 ± 0.002 0.002 0.004 0.505 <0.001
CrowdsourcingTruthfulness–PolitiFact 0.034 ± 0.030 0.098 ± 0.004 0.100 ± 0.004 0.090 ± 0.004 0.047 0.155 0.092 <0.001
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Figure 7: MovieLens ratings distribution for human and
LLM.

Table 2 summarizes the final results at 𝐵 = 300, reporting
the mean and standard deviation across 10 runs for the equiv-
alence margin, Krippendorff’s 𝛼 for the human group, the
LLM-substituted group, and the randomly substituted group,
along with the corresponding TOST p-values (𝑝1 and 𝑝2) for
both LLM and random substitutions. The LLM passed the
equivalence test on the MovieLens 100K dataset but failed on
PolitiFact—despite nearly identical 𝛼 scores between the LLM-
and human-only groups. This highlights how small margins
and higher variability, shown in the per-rater results discussed
subsequently, can lead to non-equivalence conclusions. In con-
trast, substituting annotations with random labels consistently
produced significantly lower 𝛼 scores and failed the equiva-
lence test in both datasets, confirming that LLM-generated
annotations are substantially more aligned with human judg-
ment than random labels.

Annotation Distribution Comparisons. and Figure 7 show
the rating distributions across annotators. LLM ratings align
more closely with human annotations in MovieLens 100K,
while notable differences are observed in PolitiFact. These dis-
tributional patterns mirror the statistical equivalence findings.

Agreement Change per Rater. Finally, we examined how
Krippendorff’s 𝛼 changed when each individual human coder
was replaced with the LLM (Figure 9, 10). For the PolitiFact
dataset, changes ranged from –2.3% to 2.5%, and for MovieLens
100K, from –1.5% to 1.7%. In both datasets, some raters showed
minimal change (as low as 0.1%), suggesting that the LLM
closely aligned with certain individuals. The variability in
the per rater change in Krippendorff’s 𝛼 suggests that while
substitution effects are minimal on average, individual rater
alignment with the LLM may vary. Additionally, the smaller
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Figure 8: PolitiFact ratings distribution for human and
LLM.
variability in the changes of the per rater Krippendorf 𝛼 on
the MovieLens 100k dataset dataset compared to the PolitiFact
dataset also indicates a closer LLM alignment to the raters for
the movie rating task compared to rating the truthfulness of a
piece of information.

5 Discussion
Our results demonstrate that the LLM’s ability to substitute
for human annotators is highly task-dependent. On the Movie-
Lens dataset, the model passed our equivalence test, whereas
on the PolitiFact dataset it failed. This divergence reflects fun-
damental differences between the two annotation domains:
preference-based rating versus fact-checking.

For MovieLens, it’s not surprising that LLM ratings align
with human ratings. As shown in Figure 7, the model’s scores
follow the general patterns of human raters. This likely comes
from its pretraining on large amounts ofmovie-related text [13],
which helps it learn common rating habits and genre cues. In
other words, judging movie enjoyment mostly means recog-
nizing shared cultural opinions and repeating them. While
there is some subjectivity, the range of reasonable answers
is limited and well covered in the training data. That’s why
replacing human ratings with LLM ratings hardly changes
Krippendorff’s 𝛼 in Figure 9.

In the PolitiFact dataset, replacing human ratings with LLM
ratings lowers reliability across raters (see Figure 10). Fact-
checking is harder than movie rating because it needs domain
knowledge, careful use of evidence, and awareness of political
framing. Human annotators bring in their own beliefs, ex-
pertise, and even mood, which creates variability [18, 24, 42].
Different cues like familiarity, political views, or emotional
reactions influence people in different ways [19, 22]. The LLM,
however, takes a narrower and cautious approach: it avoids
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Figure 9: The change in Krippendorf’s 𝛼 before and after
replacing for Movielens 100K dataset.

strong labels like “True” or “False” and stays near the middle
categories Figure 8. This mismatch with human judgment pat-
terns explains why inter-rater reliability drops more in this
case.

The alpha-change analysis (Figures 9 and 10) shows a clear
contrast. In MovieLens, swapping some human raters with the
LLM barely affects reliability, meaning the model can mimic
certain annotators well. In PolitiFact, though, replacements
cause big drops in agreement for some raters. This suggests
LLMs still have trouble replicating the unique, knowledge-
based reasoning humans use in complex or disputed topics.

Taken together, these findings underscore two key points.
First, our evaluation method captures meaningful differences
across tasks: it is mathematically rigorous yet sensitive to
domain characteristics. Second, LLM substitution is more vi-
able for preference-oriented annotations than for knowledge-
intensive or adversarial tasks. These results highlight the im-
portance of aligning LLM-based annotation strategies with
the epistemic demands of the domain.

Guidelines. Practitioners should apply our evaluationmethod-
ology as follows. For existing datasets, replicate the workflow
described in Section 4. If the dataset does not meet our mini-
mum criteria (four annotators, at least 80 items), a small-scale
annotation effort should be undertaken. The same approach
applies to new tasks: collect a modest but diverse sample of
annotations, compute reliability measures, and test LLM sub-
stitution feasibility before scaling.

Interpreting the Results. When an LLM passes the equiva-
lence test, it can be considered a candidate substitute for the
replaced annotator. If that annotator is a gold-standard rater,
the LLM may then be deployed to expand annotations at scale.
If substitution fails, human annotation remains indispensable,
though alternative models or prompting strategies could be
tested. Importantly, our alpha-change framework also enables
more granular exploration: identifying which human rater is
most closely approximated, comparing across LLMs, or diag-
nosing systematic biases in annotation behavior. This level of
analysis extends beyond a simple pass/fail judgment, offering
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Figure 10: The change in Krippendorf’s 𝛼 before and
after replacing for PolitiFact dataset.

a roadmap for responsibly integrating LLMs into annotation
pipelines.

6 Conclusion
Our experimental results demonstrate that the proposed eval-
uation method can effectively assess whether an LLM approx-
imates human judgment in specific text annotation tasks, us-
ing only a small number of annotated items. We applied the
method to two datasets—MovieLens 100K (𝑝 = 0.004) and
PolitiFact (𝑝 = 0.155)—with differing outcomes. The LLM
passed the equivalence test on MovieLens 100K but not on
PolitiFact. These results highlight that performance is not con-
sistent across tasks and depends heavily on the nature of the
annotation task.

This method provides a practical way to detect differences
in annotation behavior between humans and LLMs. It also
offers an opportunity to evaluate a small set of annotations be-
fore deciding whether to use an LLM for large-scale annotation
in a specific application.

Limitations and FutureWork. The performance of the LLM
is likely to vary depending on the specific model and the
prompts used. Future work should explore how different LLM
architectures and prompt strategies influence the results, en-
abling a more robust evaluation of LLM-human alignment
across annotation contexts.
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