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Abstract
Personality traits influence how individuals engage, behave, and
make decisions during the information-seeking process. However,
few studies have linked personality to observable search behaviors.
This study aims to characterize personality traits through a mul-
timodal time-series model that integrates eye-tracking data and
gaze missingness–periods when the user’s gaze is not captured. This
approach is based on the idea that people often look away when
they think, signaling disengagement or reflection. We conducted a
user study with 25 participants, who used an interactive application
on an iPad, allowing them to engage with digital artifacts from a
museum. We rely on raw gaze data from an eye tracker, minimizing
preprocessing so that behavioral patterns can be preserved without
substantial data cleaning. From this perspective, we trained models
to predict personality traits using gaze signals. Our results from
a five-fold cross-validation study demonstrate strong predictive
performance across all five dimensions: Neuroticism (Macro F1
= 77.69%), Conscientiousness (74.52%), Openness (77.52%), Agree-
ableness (73.09%), and Extraversion (76.69%). The ablation study
examines whether the absence of gaze information affects themodel
performance, demonstrating that incorporating missingness im-
proves multimodal time-series modeling. The full model, which
integrates both time-series signals and missingness information,
achieves 10-15% higher accuracy and macro F1 scores across all
Big Five traits compared to the model without time-series signals
and missingness. These findings provide evidence that personality
can be inferred from search-related gaze behavior and demonstrate
the value of incorporating missing gaze data into time-series multi-
modal modeling.

CCS Concepts
• Information systems→ Users and interactive retrieval.
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1 Introduction
Consider the different ways people behave when searching for
information. Some are easily distracted, while others display a
strong sense of curiosity. Certain individuals prefer to skim ahead
to the end, whereas others move back and forth through the mate-
rial to piece together a deeper understanding. The motivations for
searching also vary: some seek confirmation of what they already
believe [8], while others are driven by the desire to learn some-
thing new [37]. Exploring these different behaviors is essential for
advancing areas such as recommendation systems [15, 30, 55, 74],
personalization [25, 34], understanding confirmation bias [53], or
LLM-based simulations [21, 44, 47, 76]. Among the many factors
that shape these behaviors, personality traits stand out as a founda-
tional influence, impacting human patterns of thought, preference,
and decision-making across contexts [38].

Personality traits fundamentally shape how and why people seek
information. Curious and open individuals often seek intellectual
engagement, while those high in neuroticism or intolerance of
uncertainty tend to seek reassurance in negative contexts [32]. The
Big Five model [52], which includes Openness, Conscientiousness,
Extraversion, Agreeableness, and Neuroticism, is widely used in
personalization research. Studies link personality to information
seeking [24] and web search behaviors [4], showing its potential
for personalized information retrieval (IR). However, while the
importance of psychological dimensions in interaction and search
has long been acknowledged as a major challenge in IR [5], the
impact of the systematic exploration personality on IR behaviors
and its data-driven modeling remains in its early stages.

A direction for modeling personality in IR lies in eye-tracking
data. With mobile and wearable devices (e.g., Tobii Pro Glasses
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3 [58], Apple Vision Pro [31]) now featuring eye-tracking capa-
bilities [41], it is possible to collect such data in real-world set-
tings. Eye movements provide insights into cognitive and atten-
tional processes even before a user makes a decision [22]. Pre-
vious work has investigated links between personality and gaze
patterns [6, 29], though studies focusing specifically on personality
inference from eye movements during digital search interactions re-
main limited [12, 54, 72]. In addition, eye-tracking data also present
challenges; for instance, data missingness occurs frequently when
users are not looking at the screen, and noise often requires complex
preprocessing.We address these issues by interpretingmissingness–
the absence of gaze–as informative signals and by using raw gaze
data obtained directly from the eye tracker (Section 3.1.3), avoiding
additional cleaning steps in order to capture behavioral patterns
without extensive preprocessing.

Building on this perspective, we investigate the role of viewing
behaviors in recognizing users’ Big Five personality traits during
search tasks. Our user study uses a GUI-based application display-
ing museum items, enabling the collection of rich data on inter-
active search behaviors, including gaze patterns and engagement
dynamics. Our main contributions are as follows:

(1) We propose a multimodal time-series model that incorpo-
rates missing eye-tracking data as behavioral cues, integrat-
ing gaze and pupil signals to capture both attention patterns
and underlying cognitive states.

(2) We show that users’ Big Five personality traits can be pre-
dicted from eye-tracking data in complex search environ-
ments, achieving a classification performance across all five
dimensions: Neuroticism (Macro F1 = 77.69%), Conscientious-
ness (74.52%), Openness (77.52%), Agreeableness (73.09%)
(see Table 1).

(3) We present findings that characterize how users search and
explore digitized museum collections, based on a controlled
user study (𝑁 = 25) involving a graphical digital interface.

2 Related Work
2.1 Personality Traits and Search Behavior
Personality traits describe stable patterns in how individuals think,
feel, and behave [36]. These traits shape emotional andmotivational
processes, influencing how people seek, process, and use informa-
tion [62]. Prior research indicates that Big Five personality traits are
associated with differences in information search behaviors [32].

Curiosity reflects a drive to explore novelty, complexity, or am-
biguity [39]. It can be expressed as deprivation sensitivity, where
individuals are motivated to close knowledge gaps, or as joyous
exploration, where the act of learning itself is intrinsically reward-
ing [39]. By contrast, intolerance of uncertainty describes the ten-
dency to experience uncertain situations as threatening, distressing,
or undesirable [10].

Curiosity—particularly joyous exploration—is usually under-
stood as part of openness/intellect, which captures differences
in creativity, imagination, and intellectual engagement [39, 66].
Intolerance of uncertainty aligns more closely with neuroticism,
reflecting vulnerability to negative affect and worry [5, 33]. To-
gether with extraversion, agreeableness, and conscientiousness,
these dimensions form the Big Five model of personality [49].

These traits play an important role in information-seeking be-
havior. Individuals high in joyous exploration may search broadly
and openly, driven by intrinsic interest, while those high in depri-
vation sensitivity may pursue information more urgently to resolve
perceived knowledge gaps. Conversely, individuals with high intol-
erance of uncertaintymay engage in searching defensively, focusing
on information that reduces ambiguity or confirms certainty, while
avoiding open-ended exploration. In this way, personality traits
can be seen as probabilistic predictors of how people approach
information environments: shaping whether they explore widely,
focus narrowly, avoid uncertainty, or embrace it.

From a dynamic perspective, personality traits should not be
viewed as fixed responses but as distributions of tendencies across
time and context [19]. For example, someone high in intolerance
of uncertainty will not resist ambiguity in every instance but will
do so more frequently and with greater intensity than someone
lower on that trait. Similarly, individuals high in curiosity will tend
to experience more frequent and stronger motivation to seek new
information [32]. Thus, understanding personality traits provides
valuable insight into the variability of information-seeking strate-
gies across individuals.

In our study, we incorporate the Big Five personality traits [52],
commonly summarized by the acronym OCEAN: Openness (O),
Conscientiousness (C), Extraversion (E), Agreeableness (A), and
Neuroticism (N). We use eye-tracking data to examine how these
traits relate to user behavior.

2.2 Eye Tracking and Personality Traits
Eye-tracking has been widely used to investigate people’s cognitive
states and their relationship to information-seeking behavior [13,
18, 22]. Research suggests that individuals with different personality
traits may follow distinct eye movement patterns when searching
for information [2]. More broadly, prior work has established that
personality traits can influence gaze control and visual attention [2,
51, 59, 63]. This has motivated a series of studies exploring whether
personality can be inferred directly from eye-tracking data.

Hoppe et al. [29] examined the Big Five traits during every-
day activities. Participants wore head-mounted eye trackers while
walking and shopping, and the resulting gaze data were used to
train random forest classifiers. Their models achieved above-chance
prediction of Extraversion, Neuroticism, Agreeableness, and Consci-
entiousness. Berkovsky et al. [6] extended this work to controlled
settings, proposing a framework for predicting psychological char-
acteristics—including the Big Five—based on passive viewing of
images and videos. Using data from 21 participants, they applied
supervised machine learning techniques and achieved encouraging
levels of accuracy.

Other studies focused on interactive systems. Chen et al. [12] col-
lected gaze data during product selection tasks with recommender
systems, applying multiple classifiers and feature selection methods
to predict personality. Millecamp et al. [54] studied gaze patterns
in a music recommender system, with models predicting traits
such as Openness to Experience, though their accuracy was not yet
sufficient for practical applications.

Expanding to immersive contexts, Khatri et al. [40] examined
user behavior in a virtual reality shop, incorporating three-dimensional
gaze features to predict the Big Five. Woods et al. [72] investigated
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social media use, tracking participants as they browsed their Face-
book News Feeds. Using only 20 seconds of gaze data per user,
classification produced acceptable results for Extraversion and Con-
scientiousness, though performance was weaker for other traits.

Collectively, these studies highlight the dual role of eye tracking:
it not only provides insights into cognitive and information-seeking
processes but also offers a potential signal for inferring personal-
ity. Personality-related differences in gaze behavior suggest that
personality-aware models may help explain why individuals vary
in how they explore, attend to, and process information.

A practical challenge is that eye-tracking data often contain
noise, such as blinks or missing samples when users look away [35].
Previous studies have typically handled these gaps by interpolation,
replacement, or removal [7, 20, 22, 50, 71]. However, we argue that
instances of looking away are themselves informative, as they may
reveal valuable aspects of human behavior. To leverage this, we
propose a novel method that preserves these missing segments.
Our approach, detailed in Section 3.2, integrates the missing data
into a time-series framework to better capture behavioral patterns.

2.3 Time-Series Modeling and Missing Data
Cole et al. [14] analyzed time-series activity patterns to study search
behavior. Similarly, eye-tracking data can be represented as a mul-
tivariate time series, capturing variables such as gaze coordinates,
pupil size, and gaze velocity continuously over time [42]. At each
timestep, a vector of measurements is recorded, and the sequence
of these vectors traces the dynamics of visual attention as it evolves
moment by moment.

Most prior work on personality inference from gaze has reduced
these streams to aggregate features, such as fixation counts, blink
rates, or average saccade lengths[6, 29, 54, 72]. While useful, such
handcrafted summaries discard the fine-grained temporal patterns,
such as prolonged fixations, systematic scanning, or rhythmic shifts
in attention, that may carry diagnostic information about person-
ality. By contrast, sequence models such as recurrent neural net-
works [26], convolutional temporal encoders [70], and more re-
cently Transformers [45] are designed to capture dependencies
across time, making themwell suited formodeling how gaze evolves
during complex tasks.

To motivate this shift, it is helpful to look at parallel domains
where similar challenges arise. In human activity recognition (HAR),
wearable sensors generate continuous multivariate streams (e.g.,
accelerometer, gyroscope) that are best understood as sequences
[56]. Likewise, in healthcare, physiological signals such as ECG or
PPG are modeled as multivariate time series to capture patterns
in heart rhythms or respiration [28]. In both cases, moving from
handcrafted features to sequence modeling has led to significant
improvements in predictive accuracy and robustness [27]. These
domains demonstrate the value of treating behavioral signals as
structured temporal data—an approach we adopt for eye-tracking
in information retrieval.

Another challenge with eye-tracking is the prevalence of miss-
ing data. Blinks, momentary loss of calibration, or glances away
from the screen introduce gaps in the signal. Earlier studies often
discarded these segments or filled them in with simple interpolation
[29, 54]. However, research in healthcare time series has shown
that missingness can itself be informative [46]: the duration and

frequency of gaps may reflect underlying behavioral or physio-
logical states. Modern approaches augment sequential inputs with
masking vectors and temporal gap features, allowing models to
distinguish between transient noise or short-term dropouts and
more prolonged periods of missingness in the signal [11].

Despite the success of these methods in other domains, they
have not been applied to eye-tracking for personality prediction.
Our study builds on these insights by proposing a missing-data-
aware sequence modeling framework, which treats gaze not only
as a multivariate temporal signal but also as a behavioral record
where the absence of data may carry meaningful information about
individual differences in attention and personality.

3 Methodology
3.1 Experimental Setup
Experiments were conducted using theMinpaku Guide [65], an iPad
application developed for the National Museum of Ethnology in
Osaka, Japan. For this study, the English version of the app was
employed. The application provides extensive content related to
the museum’s artifacts and is based on an ostensive search model [9].
The interface follows the same structural and functional principles
as a search engine results page (SERP): users begin by browsing a
grid of artifact photos, which they can select to view detailed infor-
mation and scroll to explore related items [65]. The app consists
of multiple page types, including (i) modular image grid (shown
in Figure 1a), (ii) individual page, which contains description about
a single museum object (shown in Figure 1b), and (iii) map-based
views.

3.1.1 Procedure. The study followed a structured procedure: partic-
ipants gave informed consent, completed a pre-task questionnaire
and short training, performed the search task, and concluded with
a post-questionnaire and brief interview with stimulus recall.

This paper uses the data collected in the following two phases:

(1) Personality Assessment. As part of pre-task questionnaire,
participants completed the BFI-44 questionnaire [17] in Eng-
lish to measure their Big Five personality traits. This self-
reporting instrument has been shown to be reliable [3].

(2) Search Task. Participants explored the Minpaku Guide and
selected five items they liked most, marking them as favorites.
No time limit was imposed to avoid biasing exploratory be-
havior. In addition to user’s eye movement (see Section 3.1.3),
the application also logged detailed interaction data, includ-
ing item offsets and vertical scroll positions, since all the
pages were scrollable.

This study was reviewed and approved by the Institutional Re-
view Board (IRB) of National Institute of Informatics (NII), Japan.

In preparing the application for the task, we ensured that the
quality and arrangement of the images on the first page were ap-
propriate for the experiment. This page, which participants en-
countered first when using the Minpaku Guide, displayed multiple
artifacts in a grid layout. To maximize heterogeneity, we selected
images from a larger set using an agglomerative clustering method
(𝐾 = 50) applied to image features. The features were extracted
with ResNet50 [23], a deep learning convolutional neural network
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(a) Example of image grid page

(b) Example of description page

Figure 1: Overview of the application interfaces

widely used in image processing research. The items displayed in
the Minpaku Guide were identical for all participants.

3.1.2 Participants. Twenty-five participants took part in the exper-
iment, representing different nationalities and ranging in age from
18 to 34 years. Participants were recruited using a snowball sam-
pling strategy. Participants were informed about the purpose and
procedures of the study, including its expected duration, potential
risks, and policies regarding data storage and usage to safeguard
privacy. Participants were also explicitly told that they could with-
draw from the study at any point without penalty. All participants
provided written informed consent prior to the experiment.

3.1.3 Apparatus. Eye tracking was conducted using a Tobii Pro
Nano at a sampling rate of 60 Hz. The device, connected to a Dell
Precision 7550 computer, was positioned above an iPad Pro 2022 to
avoid obstructing participants during interaction. Each participant
sat approximately 50 cm from the iPad.

Because a video capture card was unavailable, the screen activity
of the iPad application, along with participants’ gaze trajectories,
was recorded using a Logitech C920 webcam. The webcam feed was
shown on a separate monitor that was not visible to the participant.

Algorithm 1 Training Missing-Data-Aware Network for Personal-
ity Prediction

Require: Raw eye-tracking sequence {(𝑔𝑥𝑡 , 𝑔
𝑦

𝑡 , 𝑝𝑡 )}𝑇𝑡=1, sampling
period Δ𝑡 , window length 𝐿, number of epochs 𝐸

Ensure: Trained BiLSTM parameters 𝜃 = {𝑊,𝑏}
1: Compute features:

• Compute gaze velocity 𝑣𝑡 = ∥g𝑡 − g𝑡−1∥2/Δ𝑡 (𝑣1 = 0).
• Normalize gaze coordinates: 𝑔𝑥𝑡 , 𝑔

𝑦

𝑡 ∈ [−1, 1].
• Standardize pupil diameter 𝑝𝑡 and velocity 𝑣𝑡 with z-
scores.

2: Handle missingness:
• Replace NaN with 0.
• Construct binary mask m𝑡 ∈ {0, 1}𝑑 .
• Update temporal gaps 𝚫𝒕𝑡 recursively.

3: Build augmented input f𝑡 = [x̃𝑡 ,m𝑡 ,𝚫𝒕𝑡 ] ∈ R𝑘 .
4: Partition sequence into overlapping windowsW(𝑛)

𝑘
∈ R𝐿×𝑘 .

5: for epoch = 1 to 𝐸 do
6: for each windowW(𝑛)

𝑘
with label 𝑦 (𝑛) do

7: Encode window with BiLSTM→ {h𝑡 }𝐿𝑡=1.
8: Summarize: z = [−→h 𝐿 ;

←−
h 1].

9: Predict with softmax: 𝑦 = softmax(𝑊 z + 𝑏).
10: Compute loss: L = −∑𝐶

𝑐=1 1[𝑦 = 𝑐] log𝑦𝑐 .
11: Update parameters 𝜃 with gradient descent.
12: end for
13: end for

Tracking was performed for both eyes and their recorded data
was used for analysis. Recordings had a resolution of 1024 × 576
pixels with an average accuracy of 0.52°. Ambient lighting was kept
consistent across participants to avoid effects on pupil dilation.

3.2 Missing-Data-Aware Network for
Personality Prediction

We propose a missing-data-aware framework for predicting person-
ality traits from eye-tracking signals. First, raw gaze coordinates,
pupil size, and gaze velocity are represented as multivariate time
series segmented into fixed-length windows (Section 3.2.1). Second,
missingness is modeled with binary masks and temporal gap fea-
tures, treating absent data as informative signals rather than noise
(Section 3.2.3). Finally, the augmented sequences are processed by
a bidirectional LSTM, which captures temporal dependencies and
produces window-level predictions (Section 3.2.3). Together, these
components form a pipeline that leverages both eye-movement
patterns and missing data for personality prediction. An overview
of the full pipeline is presented in Algorithm 1.

3.2.1 Eye-Tracking Data as a Multivariate Time Series. Let 𝑓𝑠 denote
the sampling frequency (Hz), and Δ𝑡 = 1/𝑓𝑠 the sampling period.
That is, the eye tracker records 𝑓𝑠 samples per second, with Δ𝑡
seconds between two consecutive recordings.

For a recording session of length𝑇 samples, we represent the eye-
tracking stream as a multivariate time series, where each sample is
represented as follows:

x𝑡 =
[
𝑔𝑥𝑡 , 𝑔

𝑦

𝑡 , 𝑝𝑡 , 𝑣𝑡
]⊤ ∈ R𝑑 , 𝑡 = 1, . . . ,𝑇 , 𝑑 = 4,
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where 𝑔𝑥𝑡 , 𝑔
𝑦

𝑡 are the horizontal and vertical gaze coordinates on
the display, 𝑝𝑡 is pupil diameter, and 𝑣𝑡 is gaze velocity. Each x𝑡 is
therefore a four-dimensional snapshot of eye behavior at time 𝑡 .

The gaze velocity is computed from the gaze position vector
g𝑡 = (𝑔𝑥𝑡 , 𝑔

𝑦

𝑡 )⊤ as

𝑣𝑡 =
∥g𝑡 − g𝑡−1∥2

Δ𝑡
, 𝑡 ≥ 2,

with 𝑣1 = 0 by convention. This captures how far the eyes moved
between consecutive samples, divided by the elapsed time.

Session and window representation. We collect the full session as

X =
[
x1, x2, . . . , x𝑇

]
∈ R𝑑×𝑇 ,

with timestamps 𝜏𝑡 = (𝑡 − 1)Δ𝑡 . Here, X is arranged so that each
column corresponds to one moment in time (𝑡 = 1, . . . ,𝑇 ), and each
row corresponds to one of the 𝑑 = 4 recorded features (horizontal
gaze 𝑔𝑥 , vertical gaze 𝑔𝑦 , pupil size 𝑝 , velocity 𝑣). Thus, X can
be seen as a compact table of the entire session: moving across
columns follows the sequence of time steps, while moving down
rows inspects the different measurements collected at that time.

Formodel training, this long sequence is divided into overlapping
subsequences (windows) of fixed length 𝐿:

W𝑘 =
[
x𝑠𝑘 , x𝑠𝑘+1, . . . , x𝑠𝑘+𝐿−1

]
∈ R𝑑×𝐿, 𝑘 = 1, . . . , 𝐾,

where 𝑠𝑘 is the start index of the 𝑘-th window and 𝐾 is the total
number of extracted windows. Each W𝑘 is therefore a short clip
of the session that spans 𝐿 consecutive timesteps but keeps all 𝑑
features at each step. In practice, this sliding-window procedure
allows the model to learn from many local fragments of behav-
ior, capturing recurring gaze patterns that may be predictive of
personality traits.

Normalization. Let (𝑊,𝐻 ) denote the screen width and height
in pixels, and (𝑔𝑥𝑡 , 𝑔

𝑦

𝑡 ) the raw gaze position recorded at time 𝑡 in
pixel coordinates. To remove dependence on the specific display
size, gaze coordinates are rescaled to a zero-centered, unit-square
system:𝑔𝑥𝑡 =

2𝑔𝑥𝑡
𝑊
−1, 𝑔

𝑦

𝑡 =
2𝑔𝑦𝑡
𝐻
−1, so that (𝑔𝑥𝑡 , 𝑔

𝑦

𝑡 ) ∈ [−1, 1]2.
After this transformation, the center of the screen corresponds to
(0, 0), the left and right edges correspond to −1 and +1 on the 𝑥-
axis, and the top and bottom edges correspond to +1 and −1 on the
𝑦-axis. This mapping ensures that gaze positions are expressed in a
common reference frame across devices and participants.

For the pupil diameter, let 𝑝𝑡 be the raw measurement at time
𝑡 , 𝜇𝑝 the mean pupil diameter across the training set, and 𝜎𝑝 the
corresponding standard deviation. We standardize pupil diameter
using z-score normalization: 𝑝𝑡 =

𝑝𝑡 −𝜇𝑝
𝜎𝑝

.

Similarly, let 𝑣𝑡 denote the raw gaze velocity, with 𝜇𝑣 and 𝜎𝑣
the mean and standard deviation of velocity over the training set.
Velocity is standardized in the same way: 𝑣𝑡 =

𝑣𝑡 −𝜇𝑣
𝜎𝑣

.

This standardization rescales 𝑝𝑡 and 𝑣𝑡 to have zero mean and
unit variance, so that the model focuses on relative fluctuations
(e.g., dilations above or below a typical pupil size, or faster versus
slower gaze shifts) rather than absolute raw values, which may
vary considerably across individuals.

Final feature vector. Unless otherwise noted, the input at each
timestep 𝑡 is the normalized feature vector

x̃𝑡 =
[
𝑔𝑥𝑡 , 𝑔

𝑦

𝑡 , 𝑝𝑡 , 𝑣𝑡
]⊤ ∈ R4,

which stacks together the four processed measurements: normal-
ized horizontal gaze position 𝑔𝑥𝑡 , normalized vertical gaze position
𝑔
𝑦

𝑡 , standardized pupil diameter 𝑝𝑡 , and standardized gaze velocity
𝑣𝑡 .

3.2.2 Modeling Missingness in Eye-Tracking Data. Eye-tracking
data collected under naturalistic conditions often contain substan-
tial missing values. This missingness arises when the participant
blinks, looks away from the screen, or when the tracker momen-
tarily loses calibration. In the raw data, such missing entries are
recorded as NaN. Since the model cannot operate directly on NaN
values, we replace them with zeros before training. However, the
value 0 can also be a valid observation (for example, a gaze coor-
dinate of 0 corresponds to the center of the screen). To prevent
confusion between true zeros and placeholders for missing values,
we introduce an explicit binary validity mask.

Binary validity masks. For each feature dimension 𝑗 ∈ {1, . . . , 𝑑}
at time 𝑡 , we define a binary indicator variable

𝑚
𝑗
𝑡 =

{
1, if feature 𝑗 has a valid observed value at time 𝑡,
0, if feature 𝑗 is missing (recorded as NaN in the raw data),

where 𝑑 = 4 in our case (horizontal gaze, vertical gaze, pupil size,
and velocity). These indicators are then collected into a mask vector

m𝑡 = [𝑚1
𝑡 ,𝑚

2
𝑡 , . . . ,𝑚

𝑑
𝑡 ]⊤ ∈ {0, 1}𝑑 .

The role of this mask is to preserve the distinction between
two different situations: (1) a feature truly takes the value 0 (e.g.,
𝑔𝑥𝑡 = 0 meaning the gaze is exactly at the horizontal center of the
screen), and (2) the original data at that position was missing and
has been replaced with 0 only as a placeholder so the model can
process the input. Without the mask, these two cases would be
indistinguishable.

Concretely, if the horizontal gaze coordinate is missing at time 𝑡 ,
we set its value in x̃𝑡 to 0 but also set𝑚1

𝑡 = 0. If the gaze is genuinely
at the screen center, then the value is also 0 but the mask records
𝑚1

𝑡 = 1. Thus, the pair (x̃𝑡 ,m𝑡 ) allows the model to differentiate
between a true zero measurement and a zero that only indicates
missingness.

Temporal gap encoding. In addition to the binary masks, we
record how long each feature has been continuously missing. For
feature 𝑗 at time 𝑡 , we define a temporal gap variable Δ𝑡 𝑗𝑡 that is
updated recursively as

Δ𝑡 𝑗𝑡 =

{
0, if𝑚 𝑗

𝑡 = 1 (feature 𝑗 is observed at time 𝑡 ),
Δ𝑡 𝑗

𝑡−1 + Δ𝑡, if𝑚 𝑗
𝑡 = 0 (feature 𝑗 is missing at time 𝑡 ),

where Δ𝑡 is the sampling period.
Thus, Δ𝑡 𝑗𝑡 counts how long feature 𝑗 has been missing up to time

𝑡 . Whenever a valid measurement is observed (𝑚 𝑗
𝑡 = 1), the gap

resets to 0. When the feature remains missing across consecutive
timesteps (𝑚 𝑗

𝑡 = 0), the gap grows by Δ𝑡 each time step.
This variable provides temporal context for the missingness:
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• If Δ𝑡 𝑗𝑡 is small (close to 0), the absence is likely due to a short
interruption such as a blink or a brief calibration error.
• If Δ𝑡 𝑗𝑡 grows large, it indicates a prolonged disengagement,
for example the participant looking away from the screen
for several seconds.

By including Δ𝑡 𝑗𝑡 as an explicit feature, the model can distinguish
between short, transient dropouts and longer episodes of missing
data, which may carry different behavioral meanings.

Extended feature representation. At each timestep 𝑡 , we construct
an augmented input vector

f𝑡 =
[
x̃𝑡 , m𝑡 , 𝚫𝒕𝑡

]
,

where:
• x̃𝑡 ∈ R𝑑 are the normalized feature values (horizontal and
vertical gaze coordinates, standardized pupil size, and stan-
dardized velocity),
• m𝑡 ∈ {0, 1}𝑑 is the binary validity mask, indicating for each
feature whether the value at time 𝑡 was truly observed (1)
or was originally missing and replaced by a placeholder (0),
• 𝚫𝒕𝑡 = [Δ𝑡1

𝑡 , . . . ,Δ𝑡
𝑑
𝑡 ]⊤ ∈ R𝑑 contains the temporal gap vari-

ables, which record how long each feature has been continu-
ously missing.

This yields an augmented representation of dimension 𝑘 = 3𝑑 :
for each of the 𝑑 base features, we include its normalized value, a
validity flag, and a temporal gap duration.

The motivation for this augmentation is threefold:
(1) The model can ignore invalid entries by using the mask m𝑡

while still retaining information about which features were
missing.

(2) The temporal gap variables 𝚫𝒕𝑡 allow the model to capture
behavioral patterns such as the difference between a short
blink (a brief gap) and sustained disengagement (a long gap).

(3) By combining observed values with missingness structure,
the model can potentially learn personality-related regulari-
ties, for example, that certain individuals tend to look away
more often or for longer periods, which may be predictive
of traits like neuroticism or conscientiousness.

3.2.3 Sequential Modeling for Personality Prediction. Personality
prediction from eye-tracking is framed as a sequence-to-label task:
the model receives a short sequence of eye-tracking data and must
predict the participant’s personality traits.

Given an augmented feature window

W(𝑛)
𝑘

= [f𝑠𝑘 , f𝑠𝑘+1, . . . , f𝑠𝑘+𝐿−1]⊤ ∈ R𝐿×𝑘 ,

we stack 𝐿 consecutive augmented vectors f𝑡 ∈ R𝑘 (normalized
features, validity masks, and temporal gaps). Here, 𝑛 indexes the
participant, 𝑠𝑘 is the start index of the 𝑘-th window, and 𝑘 is the
feature dimension.

The prediction target is 𝑦 (𝑛) ∈ {1, 2, 3}5, a 5-dimensional vector
for the Big Five traits (Openness, Conscientiousness, Extraversion,
Agreeableness, Neuroticism), where each entry takes values 1, 2, 3
for Low,Medium, andHigh. For the classification setup, participants’
continuous personality scores (originally measured on a 1–5 scale)
were partitioned into three groups using a quantile-based procedure
following [61]. For each trait, cut points were set at the 33rd and

66th percentiles of its empirical distribution, so that each group
contained roughly the same number of participants. This procedure
yielded balanced class sizes and provided clear separation among
low, medium, and high scorers. All windows from participant 𝑛
share the same label 𝑦 (𝑛) , so the task is to learn a mapping from
temporal sequencesW(𝑛)

𝑘
to the trait categories.

Sequential representation learning. Prior work often summarized
windows into handcrafted statistics, such as average fixation dura-
tion, blink counts, or velocity variance. While useful, such summary
features discard the temporal ordering of the signal. Here we instead
retain the sequence itself, enabling the model to exploit fine-grained
temporal dependencies—such as sustained fixations, repeated scan-
ning motions, or short pupil dilations—that may be characteristic
of personality traits.

BiLSTM encoder. To capture temporal dependencies in the data,
we employ a bidirectional Long Short-Term Memory (BiLSTM)
network. An LSTM is a type of recurrent neural network that is
designed to process sequences one element at a time, while retain-
ing information from previous steps through a hidden state. This
makes it well suited to modeling time-series signals such as eye
movements, where the current behavior depends strongly on what
came before.

At each timestep 𝑡 , the hidden state is updated as

h𝑡 = BiLSTM(f𝑡 , h𝑡−1), h𝑡 ∈ Rℎ,

where f𝑡 is the augmented feature vector at time 𝑡 and ℎ is the
dimensionality of the hidden state.

Unlike a standard LSTM, which only processes the sequence
forward in time, a BiLSTM maintains two parallel chains of hidden
states: a forward chain

−→
h 𝑡 that processes the sequence from 1→ 𝐿,

and a backward chain
←−
h 𝑡 that processes it in reverse from 𝐿 → 1.

At each timestep, the two are concatenated as h𝑡 =
[−→
h 𝑡 ;
←−
h 𝑡

]
.

This bidirectional setup is important because the meaning of
an event often depends on its temporal context. For example, a
brief period of missing data could be interpreted as a blink if it is
followed immediately by normal gaze behavior, but the same gap
might indicate disengagement if it occurs before and after long
stretches of missingness. By looking both backward and forward in
time, the BiLSTM can capture such context more effectively than a
unidirectional model.

Window-level representation and prediction. After processing a
window of 𝐿 timesteps, the BiLSTM produces a sequence of hidden
states {h𝑡 }𝐿𝑡=1, each encoding information about the input at time 𝑡
and its surrounding context. To obtain a fixed-length representa-
tion for the entire window, we concatenate the last forward hidden
state

−→
h 𝐿 (which summarizes information up to the end of the win-

dow) with the last backward hidden state
←−
h 1 (which summarizes

information looking backward from the start): z = [−→h 𝐿 ;
←−
h 1] .

This vector z serves as a compact summary of the whole se-
quence, capturing both past and future dependencies.

The representation z is passed to a classification head, which
applies a linear transformation followed by a softmax activation,
outputting a probability distribution over the three categories for
each personality trait.
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Training objective. Model training minimizes the categorical
cross-entropy loss: L = −∑𝐶

𝑐=1 1[𝑦 = 𝑐] log𝑦𝑐 ,
which penalizes the divergence between the predicted distribu-

tion 𝑦 and the true label 𝑦. Here, 1[𝑦 = 𝑐] is an indicator function
that equals 1 when the ground-truth label is 𝑐 and 0 otherwise. Intu-
itively, this loss encourages the model to assign high probability to
the correct class while discouraging probability mass on incorrect
categories.

4 Experimental Evaluation
4.1 Classifier Training
We train a missing-data-aware bidirectional LSTM classifier using
a 12-dimensional input feature vector at each timestep: (1) hori-
zontal gaze coordinate 𝑔𝑥 , (2) its validity mask𝑚𝑔𝑥 , (3) temporal
gap Δ𝑡𝑔𝑥 , (4) vertical gaze coordinate 𝑔𝑦 , (5) mask𝑚𝑔𝑦 , (6) gap Δ𝑡𝑔𝑦 ,
(7) gaze velocity 𝑣 , (8) mask𝑚𝑣 , (9) gap Δ𝑡𝑣 , (10) pupil diameter 𝑝 ,
(11) mask𝑚𝑝 , and (12) gap Δ𝑡𝑝 . Sequences are segmented with a
sliding window of length 𝐿=100 and overlap = 50 (stride = 50) [64],
which corresponds to a window duration of 1.67 s with 0.83 s stride
at a 60Hz sampling rate. The network uses hidden size 64, 2 layers,
dropout 0.3, and bidirectionality, followed by a two-layer classifier
head; weights are initialized with orthogonal (LSTM) and Xavier
(linear) schemes. Training uses cross-entropy loss with Adam opti-
mization (learning rate 10−3, weight decay 10−5), gradient clipping,
and a ReduceLROnPlateau scheduler (patience = 10, factor = 0.5),
for up to 100 epochs with early stopping after 15 epochs without
validation improvement. We evaluate performance using stratified
5-fold cross-validation (preserving the Low/Medium/High class
distribution) and report mean accuracy and macro-averaged F1
scores with standard deviations. To prevent data leakage, we adopt
a leakage-free data-splitting strategy in which data are split at the
segment level: for each participant, continuous signals are first
divided into non-overlapping contiguous segments, which are then
assigned to one of the five folds. Sliding windows are generated only
within segments after fold assignment, ensuring no overlap in raw
data or windows between training and test folds. We also conduct
participant-stratified cross-validation, assigning each participant
entirely to one fold to test generalizability to unseen individuals,
and report average macro F1 with standard deviations. Leave-one-
subject-out (LOSO) was not feasible because each participant only
provided data for one class. As a result, test folds contained a single
class only, making accuracy and F1 computation infeasible.

4.2 Results
Table 1 summarizes the classification performance for each of
the Big Five traits. Overall, the proposed missing-data-aware BiL-
STM achieves stable and moderately strong performance across all
traits, with mean accuracies ranging from 73.09% (Agreeableness) to
77.69% (Neuroticism). Neuroticism (77.69%) and Openness (77.52%)
exhibited relatively higher predictive performance. Extraversion
(76.69%) and Conscientiousness (74.52%) also achieved competitive
results. Agreeableness remains the most challenging trait, with
macro F1 score at 73.09%. Figure 2 depicts the confusion matrices
for each of the Big Five traits.

Table 1: Classification performance (mean ± standard de-
viation) across five folds for each Big Five trait using the
full pipeline (time series + masks + temporal gaps). The last
column reports participant-stratified cross-validation (by-
participant) macro F1 averaged across folds. Values are per-
centages; the % sign is omitted for readability.

Trait Accuracy Macro F1 By-Participant F1

Openness 77.96 ± 2.42 77.52 ± 2.63 66.23 ± 7.92
Conscientiousness 74.86 ± 2.34 74.52 ± 2.32 65.99 ± 25.12
Extraversion 78.17 ± 1.49 76.69 ± 1.24 70.89 ± 13.92
Agreeableness 73.76 ± 1.86 73.09 ± 2.05 63.13 ± 15.20
Neuroticism 79.19 ± 2.70 77.69 ± 2.92 74.33 ± 23.85

In addition to fold-level cross-validation, we evaluated perfor-
mance using participant-stratified cross-validation to test gener-
alizability to unseen individuals. While performance naturally de-
creased in this stricter setting (e.g., Macro F1 score of 63.1% for
Agreeableness and 66.2% for Openness), the model still achieved
reasonable performance, with Extraversion (70.9%) and Neuroticism
(74.3%) showing the strongest generalization.

4.3 Ablation Study
To examine whether incorporating missingness information affects
the model performance, we conducted a set of ablation experiments
where different subsets of features and modeling strategies were
retained. Here, binary masks denote missingness indicators (1 =
valid, 0 = missing).

(1) Full Pipeline. The proposed missing-data-aware BiLSTM
trained with the complete representation: time-series fea-
tures (horizontal/vertical gaze, pupil diameter, gaze velocity),
their binary validity masks, and temporal gap encodings.

(2) Time Series + Temporal Gap. The BiLSTM is trained using
the four time-series features together with temporal gap (Δ𝑡 )
encodings, but withoutmissingness indicators. In this setting,
the model retains information about the elapsed time since
the last observation, but does not explicitly encode whether
a value is observed or missing.

(3) Time Series Only. The BiLSTM trained solely on the four
raw time-series features, without masks or temporal gaps.
This serves as a baseline for sequential modeling without
any explicit missingness indicators.

(4) Non-sequential Baseline. A non-sequential model trained
on handcrafted features. For each of the four base signals
(gaze 𝑥 , gaze 𝑦, pupil, gaze velocity), we compute five de-
scriptive statistics (minimum, maximum, mean, standard de-
viation, median), yielding a 20-dimensional feature vector. A
random forest classifier is then trained on this representation,
providing a feature-engineered baseline without temporal
modeling.

Table 2 summarizes the results of the ablation study across the
Big Five traits. The full pipeline, which combines time-series fea-
tures, explicit missingness masks, and temporal gap encodings,
consistently achieves the best performance across traits, with ac-
curacies ranging from approximately 74% (Agreeableness) to 79%
(Neuroticism) and macro F1 scores between 73% and 78%. Remov-
ing missingness masks while retaining temporal gap encodings
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Table 2: Ablation study results across Big Five traits. “Full” uses time series + masks + temporal gaps features; “TS+Temporal
Gap” uses time series + temporal gap features; “TS Only” uses raw time series features; and “Statistical” uses handcrafted
statistical features with a Random Forest. Results are reported as mean accuracy and macro F1 (%) with standard deviation.

Openness Conscientiousness Extraversion Agreeableness Neuroticism

Accuracy (%)

Full 77.96 ± 2.42 74.86 ± 2.34 78.17 ± 1.49 73.76 ± 1.86 79.19 ± 2.70
TS+Temporal Gap 69.96 ± 1.50 70.43 ± 1.48 73.49 ± 2.65 67.15 ± 1.70 71.80 ± 0.99
TS Only 69.23 ± 2.48 66.86 ± 0.74 72.67 ± 2.32 65.75 ± 1.36 73.44 ± 0.44
Statistical 67.59 ± 1.84 67.15 ± 2.18 70.97 ± 3.51 65.56 ± 1.67 73.73 ± 2.08

Macro F1 Score (%)

Full 77.52 ± 2.63 74.52 ± 2.32 76.69 ± 1.24 73.09 ± 2.05 77.69 ± 2.92
TS+Temporal Gap 69.87 ± 1.54 70.38 ± 1.52 70.29 ± 3.12 66.21 ± 1.68 69.60 ± 2.58
TS Only 68.73 ± 2.45 66.51 ± 0.71 70.64 ± 2.12 65.56 ± 1.46 71.56 ± 0.37
Statistical 66.40 ± 1.80 66.99 ± 2.27 67.85 ± 3.30 64.62 ± 1.57 70.31 ± 2.90

(TS+Temporal Gap) leads to consistent performance degradation
across all traits, suggesting that explicit missingness indicators pro-
vide complementary information beyond temporal gap encodings
alone. Using only raw time-series features (TS Only) further reduces
performance, indicating that modeling both irregular sampling and
missing data is important for effective temporal representation
learning. The statistical baseline, which relies on handcrafted fea-
tures and a Random Forest classifier, performs worst overall, high-
lighting the benefit of sequential models augmented with explicit
temporal and missingness representations. Overall, the ablation
results demonstrate that each component of the proposed pipeline
contributes meaningfully to robust personality trait prediction.

5 Discussion
The results in Table 1 show that it is indeed possible to classify
personality traits from temporal behavioral features, and that this
approach works best when the full modeling pipeline is used – that
is, when raw time-series signals are combined with missingness and
temporal gap information. The consistently strong scores suggest
that eye-tracking data contains rich signals about stable psycholog-
ical traits. At the same time, the differences in performance across
the Big Five traits reveal how personality is expressed unevenly in
gaze behavior. These patterns provide not only theoretical insights
into the behavioral expression of personality but also practical
guidance for how to build computational models.

Among the five traits, Neuroticism (N) and Openness (O) showed
relatively stronger and more consistent performance, in line with
prior work linking these traits to distinctive gaze variability and
exploratory viewing behaviors [1, 57, 59, 60]. Extraversion (E) and
Conscientiousness (C) achieved moderate performance, suggesting
that attentional cues are informative but less distinctive in solitary
tasks [29, 43, 69]. In contrast, Agreeableness (A) remained the most
difficult trait to predict, consistent with evidence that it is primarily
expressed in social interaction contexts [59, 73]. Overall, traits tied
to internal regulation (attention, emotion) were easier to detect
from gaze than socially oriented traits, which may require richer
contexts or additional modalities.

When examining generalization, the by-participant cross-validation
revealed a different picture. Scores were lower and more variable

across individuals, especially for Agreeableness and Conscientious-
ness. This highlights a major challenge: while group-level models
capture broad tendencies, predicting personality consistently across
different individuals is more complex. One reason is the hetero-
geneity of cognitive strategies: individuals may differ in how they
allocate attention, process information, or regulate effort during a
task. For example, some people naturally adopt systematic scanning
routines, while others rely onmore opportunistic or intuitive search
behaviors [6, 29], leading to divergent gaze dynamics even if they
share the same personality trait [48]. Another possible explanation
is the limited sample size: with only 25 participants, the distribu-
tion of Big Five personality traits may differ substantially from
that observed in much larger populations [67]. This discrepancy
can influence performance at the individual-participant level and
limit the model’s ability to generalize. Increasing the number and
diversity of participants would likely lead to a more representative
trait distribution and improve generalization performance.

Behavioral habits and situational factors further complicate gen-
eralization. Gaze patterns are shaped not only by personality but
also by momentary states such as fatigue, stress, or task engage-
ment [19, 75]. A conscientious individual (Conscientiousness) might
display high attentional stability in one session but exhibit more
variability under distraction or cognitive load. Similarly, Agreeable-
ness – already subtle in solitary tasks – may only surface in socially
interactive contexts, making it less consistently observable across
participants [73].

These considerations suggest that variability is not simply “noise”
but reflects meaningful person–context interactions. Capturing
these nuances may require models that account for both stable
dispositions and dynamic behavioral states. Approaches such as
domain adaptation, personalized modeling, or hierarchical frame-
works could help bridge the gap, enabling models to distinguish be-
tween trait-driven regularities and state-driven fluctuations. More
broadly, these findings underscore the importance of integrating
cognitive and behavioral theories into computational modeling:
personality is not expressed uniformly, but filtered through the
individual’s strategies, habits, and situational context [19].

The ablation results in Table 2 emphasize why temporal context
matters. The complete pipeline (time series + masks + temporal
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Figure 2: Confusion matrices for each personality trait.

gaps) consistently outperformed both raw time series alone and
handcrafted statistical features. Notably, the inclusion of masks and
temporal gap information added substantial value. This suggests
that personality-relevant information is not just in the sequence
of gaze coordinates but also in irregularities – when people look
away, how long gaps last, and how missing data is structured. This
aligns with recent research in time-series modeling that treats miss-
ingness as informative rather than as noise [11, 46]. Ignoring such
irregularities risks discarding psychologically meaningful signals.

From a cognitive perspective, irregularities reflect the underly-
ing processes of attention and information processing. Long gaps
can signal lapses in sustained attention or shifts in cognitive focus,
often linked to high Neuroticism or lower engagement with the
task [16]. Doherty-Sneddon and Phelps [16] noted that people tend
to look away when under high cognitive load. By contrast, more
frequent gaze shifts and less tightly constrained fixation patterns
may reflect exploratory viewing strategies, which are characteris-
tic of individuals high in Openness, who tend to engage flexibly
with stimuli and seek novel information. Thus, the timing of gaze
interruptions offers indirect but meaningful cues about attention
and control.

Behaviorally, missingness patterns capture differences in task
approach. Some individuals show bursts of exploratory scanning
interspersed with pauses – consistent with curiosity and Openness
– while others show repetitive fixations and fewer breaks, reflecting
more rigid or habitual engagement [1]. This means irregular timing
is not just a random error but a behavioral marker of personality-
linked cognitive styles.

The methodological implications are equally important. Tradi-
tional feature engineering often assumes that missing data should
be interpolated or discarded, but our findings indicate that the very
presence and distribution of missingness can serve as predictive
features. This perspective aligns with a growing body of behav-
ioral informatics research, which argues that “what is absent” in
behavioral traces can be as informative as “what is present” [11].
For personality modeling, this means that gaze dynamics should
be analyzed not only for their visible sequences but also for their
absences, interruptions, and irregular rhythms.

In summary, our findings show that eye-tracking holds promise
for inferring personality, albeit with important boundaries. Traits
tied to attention and emotion, such as Openness and Neuroticism,
are especially well captured, while socially expressed trait like
Agreeableness may require richer data sources such as language,
physiology, or social interaction [68, 69]. Task design also plays a

critical role: social or collaborative contexts may amplify expres-
sions of traits that remain muted in solitary tasks.

In general, the temporal structure of eye movements, includ-
ing where gaps occur, provides meaningful cues about personality.
However, not all traits are equally predictable, and performance
varies across individuals. Recognizing these nuances is crucial both
for advancing personality science and for building adaptive systems
that personalize interactions. Combining eye-tracking with mul-
timodal data and more diverse task designs could lead to models
that are both more comprehensive and more generalizable.

6 Conclusion
This study demonstrates that eye-tracking data, especially when
analyzed as time-based sequences that include gaps and missing
points, can provide useful insights into personality. We found that
traits related to attention and emotion regulation, such as Neuroti-
cism and Openness, are captured well in gaze patterns. In contrast,
socially driven traits like Agreeableness is harder to detect in tasks
performed alone. This highlights both the promise and the limits
of using eye movements alone to infer personality.

Beyond prediction accuracy, our work makes two broader con-
tributions. First, we demonstrate that irregularities in gaze, mo-
ments when people look away or pause, are not just noise but carry
meaningful signals about attention control, disengagement, and
exploration. Second, we highlight that personality is shaped by
both stable traits and changing contexts, which means models must
account for individual differences while also adapting to situational
influences.

Limitations. Our study focused exclusively on museum settings
using picture-based search systems. Additionally, different eye-
tracking devices may yield varying results due to differences in
processing capabilities and other influencing factors, such as sam-
pling frequency, camera resolution, and calibration quality.

Future Work. Future research could extend this work to a wider
range of interactive settings. Additionally, combining eye-tracking
data with other modalities such as electrodermal activity (EDA),
electroencephalography (EEG), or electrocardiography (ECG) could
enrich multimodal models and offer deeper insights into how per-
sonality traits influence information-seeking behavior.
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