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Information processing tasks involve complex cognitive mechanisms that are shaped by various factors, including individual
goals, prior experience, and system environments. Understanding such behaviors requires a sophisticated and personalized
data capture of how one interacts with modern information systems (e.g., web search engines). Passive sensors, such as
wearables, capturing physiological and behavioral data, have the potential to provide solutions in this context. This paper
presents a novel dataset, SenseSeek, designed to evaluate the effectiveness of consumer-grade sensors in a complex information
processing scenario: searching via systems (e.g., search engines), one of the common strategies users employ for information
seeking. The SenseSeek dataset comprises data collected from 20 participants, 235 trials of the stimulated search process,
940 phases of stages in the search process, including the realization of Information Need (IN), Query Formulation (QF),
Query Submission by Typing (QS-T) or Speaking (QS-S), and Relevance Judgment by Reading (RJ-R) or Listening (RJ-L). The
data includes Electrodermal Activities (EDA), Electroencephalogram (EEG), PUPIL, GAZE, and MOTION data, which were
captured using consumer-grade sensors. It also contains 258 features extracted from the sensor data, the gaze-annotated
screen recordings, and task responses. We validate the usefulness of the dataset by providing baseline analyses on the impacts
of different cognitive intents and interaction modalities on the sensor data, and effectiveness of the data in discriminating the
search stages. To our knowledge, SenseSeek is the first dataset that characterizes multiple stages involved in information
seeking with physiological signals collected from multiple sensors. We hope this dataset can serve as a reference for future
research on information-seeking behaviors.

CCS Concepts: • Information systems→ Users and interactive retrieval; •Human-centered computing→ Empirical
studies in HCI.
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1 Introduction
Information is ubiquitous [15], and modern information access systems such as web search engines or intelligent
assistants have evolved to become increasingly diverse, offering greater mobility and multiple ways of interaction.
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In this context, wearable sensors that capture physiological and behavioral data have demonstrated remarkable
capabilities in enhancing human-computer interaction and improving daily life applications. There is growing
research interest in leveraging these wearable sensors to explore novel questions in information interaction,
including the detection of user interest [2, 14] and engagement during video browsing [4, 22], recognition of
cognitive preference [8, 47] and emotional responses [17] on social media content, and understanding various
information needs [43].
Information only becomes meaningful when individuals extract and interpret it [15]. This interpretation

process engages complex cognitive mechanisms, such as attention allocation, memory retrieval, reasoning, and
decision-making [26, 49], shaped by various factors, including individual goals, prior experience, and system
environments [15, 52]. Physiological data offers unique insights as it responds sensitively to different activities
and variables, while physiological states themselves can also influence these activities. Given these intricate
relationships between physiological data and contextual factors, careful examination of their interactions is
essential [53]. Moreover, wearable sensors are becoming smaller and more compact, as seen in new devices like
earphone-style EEGs that have fewer sensors [28, 66]. Although these smaller devices are more convenient to
wear, researchers need to balance this convenience with how well they can collect accurate and reliable data.

Rationale for a new dataset. In this paper, we focus on a complex information processing scenario: information
seeking, an iterative problem-solving process where users identify gaps in their knowledge and employ various
strategies to address them [34]. Searching via systems (e.g., search engines) is one of the common strategies users
employ, involving multiple downstream tasks (referred to as search stages in this paper) that each carry different
cognitive intents. A simplified explanation of this process is as follows, summarized from [26, 34]. The user first
recognizes a problem regarding their need for information and then reaches the system; this stage is termed the
realization of Information Need (IN). Next, they think about the query, Query Formulation (QF), and submit, Query
Submission (QS). When they receive the results from the system, they evaluate both the information contents and
the quality of the search session; this stage is termed Relevance Judgment (RJ). Given that these stages engage
different cognitive processes, they may be reflected in bodily responses, which leads to our first research question,
RQ1: To what extent do different cognitive intents across search stages influence users’ physiological
responses?Moreover, the information systems have been diversified by providing different interaction modalities,
i.e., Query Submission by Typing (QS-T) or by Speaking (QS-S) and Relevance Judgment by Reading (RJ-R) or by
Listening (RJ-L). As these modalities engage different sensory and motor systems, we propose our second research
question, RQ2: How do different interaction modalities influence users’ physiological responses? On
the other side, given the growing trend of employing physiological and behavioral data in information activities,
especially in real-world settings (e.g., social media usage [17], everyday workspace [32, 45]), it is essential to
understand the baseline performances of these measurements. This leads us to our third research question, RQ3:
How effectively can physiological and behavioral data detect and distinguish between specific search
stages in information seeking processes?

Therefore, we introduce the SenseSeek dataset, a comprehensive dataset comprising multimodal sensing data
for studying information seeking behaviors. To the best of our knowledge, SenseSeek is the first dataset to
analyze downstream searching tasks (i.e., search stages) using physiological and behavioral data collected using
multiple consumer-grade sensors. It includes data from 20 participants who completed a controlled lab-based
study simulating a mock-up information search scenario, divided into 6 search stages with 4 different interaction
modalities. The user study content was carefully curated to ensure objectivity by minimizing the influence of
subjective factors such as feelings, attitudes, and relevance. The data comprises a range of physiological and
behavioral data, including Electrodermal Activity (EDA), Electroencephalogram (EEG), MOTION (including wrist
and head motion) from wearable devices, and PUPIL and GAZE from a screen-mounted eye tracker. It includes
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both raw and cleaned versions of the data, along with 258 extracted features. To provide contextual richness, it
also contains the task materials, self-rated perceptions, and gaze-annotated screen recordings.
The contribution of this paper is 4-fold:
(1) Introducing the SenseSeek dataset, consisting of multiple sensor data (raw and cleaned) and extracted

features, self-rated perceptions, gaze-annotated screen recordings from 20 participants performing mock-
up information searching tasks;

(2) Understanding the physiological responses by the influence of cognitive intents and interaction modalities
in a sequence of search stages by a highly controlled lab study;

(3) Assessing the effectiveness of physiological and behavioral data captured by consumer-grade sensors for
monitoring information behavior;

(4) Proposing an experimental setup for data collection during information seeking can be replicated across
diverse experimental settings, from naturalistic information search to conversational-style interaction, or
multi-media information-access interaction.

2 Related Work
This section introduces the background about information seeking and passive sensing, and discusses the necessity
of establishing a baseline of the effectiveness of sensor data in this context.

2.1 Human Information Interaction & Information Seeking
Introduced by Fidel [15], Human Information Interaction (HII) investigates how users interact with and make
sense of information. HII is a broad and multidisciplinary field. Based on the research problem, HII has often been
segmented and incorporated into specialized areas, such as Human-Computer Interaction (HCI), Information
Retrieval (IR), or Information Behavior studies.
Information seeking is a sub-area in HII [15]. Information search is a process in which a user interacts with

an information access system (e.g., a web search engine) to fulfill their need for information (i.e., information
need) [34]. In the field of IR, this process is usually described as an iterative process which consists of a sequence
of search stages: the realization of Information Need (IN), Query Formulation (QF), Query Submission (QS)
and Relevance Judgment (RJ) [34]. Circumstances, goals, and motivations might drive user to seek particular
information to address a gap in their knowledge or understanding (IN). In a lab study, a backstory describing
the scenario is usually provided for this purpose. They then plan about what query can help obtain the desired
results from the system (QF) and proceed to execute the plan (QS). Finally, they evaluate whether the results meet
their information goals (RJ).

To enhance user experience and accurately meet user needs in various contexts, wearable sensors might have
great potential to offer a portable and accessible solution [39].

2.2 Understanding Information Behaviors with Passive Sensing
Passive sensing, including the use of behavioral and physiological sensors, offers a uniqueway to study information
behaviors by capturing real-time, naturalistic data. This approach provides deeper insights into how individuals
engage with and process information in everyday contexts.
Eye-tracking data, such as eye movements, is commonly used in information behavior studies to visualize

attention and assess user judgments on relevance [10], task goals [12], and interests [24]. Additionally, motion
data, including wrist and head movements, is valuable for understanding emotional states and engagement. For
instance, wrist movements have provided insights into learning engagement [16]. In a study about social media
use, Gebhardt et al. [17] found that behavioral features have outperformed the physiological features in emotion
detection.
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Physiological data, including skin conductance, heart rate, pupil dilation, and brain activity, have been widely
used to explore cognitive or affective states in information behavior studies. For example, Gupta et al. [20] used
physiological data and eye activity for recognition of emotional memory recalls. Jimenez-Molina et al. [27]
measured workload changes during web browsing with multiple physiological data. Their classification models
using EEG data outperformed those excluding it. Moshfeghi et al. [50] have utilized brain activity to detect
information need realization, while Ye et al. [64] explored EEG responses when individuals identify keywords
linked to information needs. Moshfeghi and Jose [48] found that combining physiological data with task dwell
time significantly improved the discrimination of search intentions. Wu et al. [62] demonstrated that EDA could
predict online shopping satisfaction, while White and Ma [61] showed that heart rate features were closely linked
to user interest on search pages. Edwards and Kelly [14] found that skin conductance was associated with interest,
while heart rate indicated frustration during search tasks.

2.3 Dynamics of Information Interaction & Sensor Data
Information activity centers on the interaction between users and information [15]. Beyond the inherent charac-
teristics of the information contents, various factors during user interactions with information access systems
might also influence sensor data. These influences, which may affect the generalizability of results, remain
insufficiently understudied.

First of all, the cognitive intent. As previously discussed, during information searching, users progress through
the information stages with varying cognitive intents. Research found that these shifts in intent trigger diverse
affective and cognitive processes [51], which may, in turn, influence physiological responses.

Secondly, the interaction modalities. To accommodate evolving user demands, the information access systems
have been renovated into multi-media platforms offering diverse interaction methods. These include not only tra-
ditional screen-based interactions but also voice-based interactions and their combinations. Different interaction
methods undergo distinct internal processes in humans, evoking varied psychological responses. For example, the
single-channel EEG data [58] or physiological responses [56] are used to assess mental workloads across contexts
with varying cognitive and motor demands. Iadarola et al. [23] found that EDA captured by the Empatica E4
wristband could differentiate the emotions in pleasant and unpleasant acoustic stimuli. It is yet understudied
whether these responses impact the physiological data captured by consumer-level wearable sensors. In this
paper, we focus on comparing different interaction modalities in submitting or receiving information. Specifically,
submitting the query to the system by typing (QS-T) or by speaking (QS-S), and receiving the search results from
the system in text format for reading (RJ-R) or audio format for listening (RJ-L).
Furthermore, physiological and behavioral data have their unique advantages and limitations. Firstly, since

different information stages require various physical actions, behavioral data may exhibit more observable
differences among search stages compared to physiological data. However, physiological data can provide insights
into users’ internal states such as stress levels, cognitive load, and emotional responses, which behavioral data
alone cannot capture. Secondly, physiological data have varying response times to stimuli [55]. This variability
is particularly relevant in the context of information searching, where the duration of search stages can range
from a few seconds to over a minute, unlike tasks in other studies with consistent engagement durations, e.g.,
[17]. There is a growing interest in incorporating these sensing data into advanced analytical applications (e.g.,
building predictive models), but what is less clear is how these variants, instead of the experimental stimulus,
impact model performance.

2.4 Multimodal Sensing Datasets
A body of recent research has established valuable datasets for studying physiological and wearable sensor data
across diverse contexts. The DEAP dataset [30] laid the groundwork for emotion analysis using physiological

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 9, No. 3, Article 92. Publication date: September 2025.



SenseSeek Dataset: Multimodal Sensing to Study Information Seeking Behaviors • 92:5

signals, while newer contributions have expanded into specialized domains. The Emognition dataset Saganowski
et al. [54] and Banik et al. [4] focused on continuous emotion annotation during video consumption, and EEG-
SVRec [68] for short-video recommendation. Bota et al. [9] focused on the group emotion experiences during
movie sessions in a more naturalistic setting. VREED [59] incorporated virtual reality contexts with eye tracking,
and LAUREATE [36] targeted memory augmentation applications. WEAR [7] focused on outdoor sports activity
recognition. Zhang et al. [67] worked on collaborative cognitive experience using EEG. These datasets demonstrate
the evolution toward multimodal sensing approaches in naturalistic settings, with a focus on solving practical
problems. It also highlights a persistent challenge in the need for standardized annotation.

3 Data Collection Methodology
This section introduces the details of the data collection procedure.

3.1 Participants
We collected the data from 20 participants (12 male, 8 female). A summary of their demographic attributes is
given in Table 1. All participants were required to have at least professional working proficiency in English to
ensure a minimum of additional effort was involved when completing the study, which was presented in English.

The study received ethics approval from RMIT University, and the participants provided written consent prior
to the experiment. A total of 29 participants were recruited. After the experiment, the participants were contacted
again for follow-up consent to release the raw data, and 20 out of 29 participants provided consent.

Table 1. Demographic of participants in the dataset.

Gender Age English Proficiency Right-Handed Wear-Glasses

Male 12 18–24 years old 5 Professional 4 Y 18 Y 12
Female 8 25–34 years old 14 Full Professional 11 N 2 N 8

35–44 years old 1 Native English 5

Total Number of participants 20

3.2 Material
The topics and the corresponding backstories (i.e., task scenarios) are selected from the TREC2002-InformationNeed
dataset [46]. This dataset contains backstories corresponding to different topics from the TREC2002-4 topic set,
and categorizes them into three labels in terms of cognitive complexity. We use the topics from the Understanding
category, which requires the participants to find information and gain some understanding of the topics. After
removing the topics related to crises, wars, conspiracy, or politics, which might trigger subjective feelings, we
select 12 topics and their corresponding backstories.
We reviewed and adjusted the backstories and the search results based on Flesch-Kincaid readability scores

and word counts. All search results were converted into an audio format with the Google text-to-speech API for
the listening tasks. As a result, the backstories have an average of 40±1 words, the search results have an average
148±3 word count with a readability level of 12, and the corresponding audios average 64±4 seconds.

3.3 Search Task
The search task is inspired andmodified based on the experiment inMoshfeghi and Pollick [49], which contains the
following search stages: Information Need (IN), Query Formulation (QF), Query Submission (QS), and Relevance
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+
Fixed- Cross 
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+
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+
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Search Tasks
(Set 2 - 6 topics)

RJ- LRJ- R QS- S QS- T

IN QF

Baseline EYECLOSE
(15 seconds)

Search Task

Target Search Stage

Fig. 1. User study procedure. The top section outlines the overall procedure, while the bottom details the search task
procedure. Topic order and interaction modalities are randomized. Example contents for one topic are shown in italic font.
The target stages are labeled with their abbreviations: Information Need (IN), Query Formulation (QF), Query Submission by
Typing (QS-T) or Speaking (QS-S), and Relevance Judgment by Reading (RJ-R) or Listening (RJ-L).

Judgment (RJ). Note that as we are interested in the different responses among search stages rather than particular
evaluation criteria, only one pre-defined highly-relevant search result is provided at RJ for each topic.
Each task starts with a 4-second blank, where the participants are asked to look at the fixed cross in the

middle of the screen. A topic is shown afterward. And the participants need to rate their interests, familiarity,
and perceived difficulty regarding the topic, with a 5-point Likert scale (as listed in Appendix B). After that, a
backstory that evokes their information need is presented. The participants are then given 10 seconds to form a
search query in mind (QF). Next, they follow an instruction to submit the query by speaking (QS-S) or typing
(QS-T). Then the participants receive the search result by either a text paragraph to read (RJ-R) or an audio to
listen (RJ-L). In the end, the participants need to answer a binary judgment question to ensure engagement and
rate perceived relevance and difficulty in understanding the search result, with a 5-point Likert scale (as listed in
Appendix B). Apart from QF, there was no time constraint on completing the task.

To avoid the physiological responses overlapping between the stages, the 4-second gap is also provided before
the three interested stages, i.e., QF, QS, RJ. The sequences of topics and the combination of interaction modalities
are randomized.

3.4 Procedure
After calibrating all sensors, the participants need to answer a background survey. The survey asked questions that
might impact the data quality, e.g., handiness, caffeine intake, sleep hours, and spectacular. Next, the participants
are instructed to have a 15-second eyes-open (EYEOPEN) and 15-second eyes-close (EYECLOSE) section to collect
the baseline, followed by a training section containing the instruction and two practice tasks. Then the participants
proceed to the main search tasks (12 tasks in total). There is a 5-minute break provided in the middle. After
completing the whole experiment, participants are asked some questions regarding their experience during
the experiment to reveal some undetected activities. For example, ‘do you feel the 10 seconds given for query
formulation is unnecessary or useful?’.
The details in the search tasks, e.g, the time given to query formulation and the total number of tasks, were

pilot-tested with 4 additional participants.
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3.5 Apparatus and Setup

Tobii Fusion Eye-Tracker
Webcam

Empatica E4 Wristband

Emotiv EPOC X Headset

(a) Experimental setup. (b) The EEG electrode locations (adapted from [19]).

Fig. 2. Experimental setup and apparatus.

The list of apparatus and collected data is presented in Table 2, and the setup is presented in Figure 2. The
study is conducted in an illuminated room, which includes a desktop PC mounted with an eye-tracker and a
web camera. All participants are provided with a standard right-handed computer mouse to complete the tasks.
The participant sits in front of the computer and wears the wristband on the left hand. The instructor cleans
the electrodes and the participant’s skin on the inner and outer wrist with alcohol wipes [3], and helps the
participants to wear the headset and adjusts the position of the electrodes. The experiment is created on the
Qualtrics1 platform.

Table 2. List of sensor data collected in the dataset.

Sampling
Description Data Rate Channels Comments Apparatus

Electrodermal Activity EDA 4Hz 1 Unit in microsiemens (uS) Empatica E4 Wristband2Wrist Motion - accelerometer MOTION 32Hz 3 (𝑥,𝑦, 𝑧) Data in [-2g, 2g] range

Head Motion - accelerometer
MOTION

128Hz 3 (𝑥,𝑦, 𝑧) Data in [-16g, 16g] range

Emotive EPOC X Headset3- magnetometer 128Hz 3 (𝑥,𝑦, 𝑧) Data in [-2000dps, 2000dps] range
- quaternions 128Hz 1 Data in [-1g, 1g] range

Electroencephalogram EEG 128Hz 14 (AF3, F7, F3, FC5, Unit in microvolt (uV)
T7, P7, O1, O2, P8,
T8, FC6, F4, F8, AF4)

Gaze Movement GAZE 60Hz 2 (𝑥,𝑦) x 2 (left, right) The coordinate of gaze point in screen Tobii Fusion Eye-tracker4Pupil Diameter PUPIL 60Hz 1 x 2 (left, right) Unit in millimeters (mm)

4 SenseSeek Dataset Description
This section describes the dataset and the data cleaning and processing steps for the validation.

4.1 Overview
This dataset comprises data collected from 20 participants, each completing 12 search tasks, for a total of 240
trials. We excluded 5 trials due to unexpected environmental disturbances and equipment failures, leaving 235
trials in the dataset. Additionally, eye-tracking data for 2 participants were not recorded because of device errors.
The summary of the dataset is presented in Table 4.
1https://www.qualtrics.com/about/
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Table 3. Table of Glossaries and Abbreviations. *Note that these are specialized terminologies used in the field of information
behavior studies [29].

Stage Name Abbreviation Description

Baseline EYEOPEN EYEOPEN A baseline task to relax and look at the screen with eyes open for 15 seconds.
Baseline EYECLOSE EYECLOSE A baseline task to relax and close the eyes for 15 seconds.

The realization of Information Need* IN
Read the given backstory* (i.e., scenario) to understand the context and the need
for information.

Query Formulation* QF Think about a search query for getting the desired information from the system.
Query Submission* by Typing QS-T Type the search query and submit to the system.
Query Submission* by Speaking QS-S Speak the search query and submit to the system.

Relevance Judgment* by Reading RJ-R
Receive a (highly relevant in this study) search result in text format to read, and
judge the relevance to the information need.

Relevance Judgment* by Listening RJ-L
Receive a search result in audio format to listen to, and judge the relevance to
the information need.

Table 4. Summary of the SenseSeek dataset.

Recorded Contextual Data

Number of participants 20 Number of Topics 12
Number of Gaze-annotated Screen Recordings 20 Number of Task Responses 235

Recorded Sensing Data

Search Stages Baseline IN QF QS RJ Total
(+ baseline)EYEOPEN EYECLOSE QS-T QS-S RJ-R RJ-L

Duration in seconds (sd) 15.0 (0) 15.0 (0) 23.4 (14.1) 10.0 (0) 17.7 (10.1) 6.8 (2.5) 49.2 (19.8) 66.0 (4.4) -

Amount
of Data
Instance

EEG 20 20 235 235 119 116 118 117 940 (+40)
MOTION (head) 20 20 235 235 119 116 118 117 940 (+40)
MOTION (wrist) 20 20 235 235 119 116 118 117 940 (+40)
EDA 20 20 235 235 119 116 118 117 940 (+40)
GAZE 18 NA 211 211 107 101 106 105 859 (+18)
PUPIL 18 NA 211 211 107 101 106 105 859 (+18)

4.2 Sensor Synchronization
The event timestamps of the task behaviors were recorded with the JavaScript library on Qualtrics. To synchronize
all sensors, we convert the timestamps into ISO 8601 time format with milliseconds. The signals were aligned and
segmented according to the event timestamps recorded. An example of apparatus timeline and synchronization
is presented in Figure 3.

4.3 Data Pre-Processing
All data was processed with the Python programming language. EEG data were processed using the MNE library
5. EDA and wrist motion data obtained from the wristband were processed using the NeuroKit2 [40] library.
PUPIL data was cleaned with the PyPlr [41] library. Data collected during the break section were excluded from
pre-processing.

EEG. Following similar procedures to Martínez-Santiago et al. [42], Ye et al. [63], Gwizdka et al. [21], EEG data
were first re-referenced with the common average, denoised with a Butterworth filter (1 – 40Hz), and removed
the signal mean for the middle 90% percentile. Next, to remove the artifacts (e.g., blinking), the data was further
cleaned and interpolated with the Autoreject [25] package and Independent Component Analysis (ICA) combined
5https://mne.tools/stable/i
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E4 start

Baseline (30 seconds)
Section 1 Section 2 Task Finished

Empatica E4 
Wristband

Tobii Fusion 
Eye-tracker

Emotiv Epoc+ 
Headset

GAZE

Wrist 
Motion

EDA

EEG
Headset start

Eye-tracker Start
Screen recording Start

Head 
Motion

Eye-tracker Stop
Screen recording Stop

Headset Stop

E4 Stop

Task StartInstruction + Practise Break (5 minutes) Calibration

PUPIL

Fig. 3. Example of Apparatus Timeline and Synchronization in the Data Collection.

with ICLabel [38]. The power spectral density (PSD) of each EEG channel was then calculated using Welch’s
method and hamming window and normalized [33, 37, 58], for 4 frequency bands, 𝑇ℎ𝑒𝑡𝑎 (4–8Hz), 𝐴𝑙𝑝ℎ𝑎 (8–13
Hz), 𝐵𝑒𝑡𝑎 (13–30Hz) and 𝐿𝑜𝑤𝐺𝑎𝑚𝑚𝑎 (25–40Hz) [21].

EDA. Following a similar procedure as by Gao et al. [16], Gebhardt et al. [17], EDA was first cleaned with
a rolling median filter with a 3-second window (12 data points) [3], and then standardized using the 𝑧-score.
Next, the convex optimization cvxEDA method [18] was applied to decompose the tonic value, i.e., the Skin
Conductance Level (SCL), and the phasic value, i.e., the Skin Conductance Response (SCR).

MOTION. No pre-processing was done on the head motion data. For the wrist motion, we followed the
procedure of Gao et al. [16]. We first calculated the magnitude from the 3 coordinates (𝑥,𝑦, 𝑧), |𝑎 | =

√︁
𝑥2 + 𝑦2 + 𝑧2,

then cleaned with a rolling median filter with 0.2-second window (6 data points).

GAZE & PUPIL. The invalid gaze samples identified by the eye-tracker were removed. We used Tukey’s method
on the first derivatives to remove the noise caused by blinks from the left and right pupils, respectively. The
samples with first derivatives lower than or higher than 3 standard deviations are removed. Then, the cleaned
data of both sides were combined by taking the arithmetic mean, and linear interpolation was applied to fill in
the blink gaps. Finally, a zero-phase Butterworth filter (4Hz, 3𝑟𝑑 ) was applied to remove outliers [41]. We also
calculated Relative Pupil Dilation (RPD), the relative changes of current pupil diameter compared to a baseline
value (EYEOPEN), following the formula by Gwizdka et al. [21]: 𝑅𝑃𝐷𝑖

𝑡 = (𝑃𝑡 − 𝑃𝑖
𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒

)/𝑃𝑖
𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒

where 𝑡 is time,
𝑖 is participant, and baseline is the average pupil diameter during EYEOPEN.

4.4 Features Extraction
We extracted a total of 258 features from both physiological (EDA, EEG, and PUPIL) and behavioral (MOTION
and GAZE) data, following [5, 6, 8, 13, 16, 21]. The features are listed in Table 5. More details on the extraction
are described in the Appendix A.1.

Normalization. Same as in Gebhardt et al. [17], the normalization was done by per participant. The physiological
features were normalized by subtracting the value in the baseline period (i.e., EYEOPEN). The behavioral features
were normalized by subtracting the mean values overall for the whole experiment and then dividing by the
standard deviation.
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Table 5. List of total 258 extracted features. Skin Conductance Level (SCL), Skin Conductance Response (SCR), standard
deviation (sd). Relative Pupil Dilation (RPD). *Four EEG frequency band: 𝑇ℎ𝑒𝑡𝑎 (4–8 Hz), 𝐴𝑙𝑝ℎ𝑎 (8–13 Hz), 𝐵𝑒𝑡𝑎(13–25 Hz)
and 𝐿𝑜𝑤𝐺𝑎𝑚𝑚𝑎 (25–40 Hz) bands [21]. **Four channel groups: frontal-left (AF3, F7, F3, FC5), frontal-right (FC6, F4, F8, AF4),
back-left (P7, O1), and back-right (P8, O2) [21]. ***statistics (5): five statistical description features include mean, max, min,
sd, range.

Type Group Category Features N. Features

Ph
ys
io
lo
gi
ca
l

EDA(31) EDA statistics (5), median, variance, skewness, kurtosis 9
statistics (5) of 1st/2nd derivative of EDA 10 (5x2)

SCL statistics (5), median, mean amplitude 7

SCR statistics (5) 5

EEG(180)
14 channels mean, sd, skewness, kurtosis, curve length, zero crossings,

number of peaks, wavelet entropy
112 (8x14)

4 frequency bands* the logarithms of the spectral power 56 (4x14)

4 bands of 4 channel groups** Inter-/Intra-hemispheric asymmetry power ratios be-
tween/within right-left groups

12 (4+8)

PUPIL(25)
Pupil Diameter statistics (5), median 6

LHIPA index [13] 1

RPD statistics (5), 5 quarterlies (10, 25, 50, 75, 90) 10
statistics (5), 3 quarterlies (25, 50, 75) of 1st derivative of
RPD

8

Be
ha
vi
or
al

MOTION(13)
Wrist Motion statistics (5) of magnitude of acceleration 5

Head Motion mean of x, y, z coordinates of angular speed/acceleration 6 (3x2)
mean, energy of magnitude of acceleration 2

GAZE(6) fixation/saccade number of occurrence, total duration (normalized), mean
duration of each occurrence

6 (3x2)

5 Validation
This paper aims to validate the SenseSeek dataset by understanding how different cognitive intents (RQ1) and
interaction modalities (RQ2) across search stages influence physiological responses, and investigating the effec-
tiveness of using physiological and behavioral data to distinguish search stages (RQ3). This section presents our
validation methodology and findings organized according to these research questions.

Before conducting any analysis, we first reviewed the self-reported task perceptions to ensure the experimental
conditions met our anticipation (Section 5.1). To answer RQ1 and RQ2, we conducted the exploratory analysis
with statistical tests in a within-subject setting. We first conducted non-parametric Friedman tests to compare
across EYEOPEN baseline, and all search stages (IN, QF, QS-T, QS-S, RJ-R, RJ-L) for overall impacts (Section 5.2).
We then performed post-hoc analysis to compare stages with similar characteristics: EYEOPEN, IN, and RJ-R

(different cognitive intents, same interaction modalities, RQ1, Section 5.3), and QS-T vs. QS-S, and RJ-R vs. RJ-L
(same cognitive intents, different interaction modalities, RQ2, Section 5.4). The multiple comparisons were
accounted for with Bonferroni correction. For RQ3, we conducted a classification analysis by developing machine
learning models using features from individual and multiple sensor groups, and comparing the performances in
discriminating all search stages.
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Table 6. Non-parametric Friedman Statistical Testing Results (F-value) comparing all search stages and EYEOPEN for the 4
frequency bands at 14 EEG nodes. 𝑝 < .05*, < .01**, < .001***.

Band\Node AF3 AF4 FC5 FC6 F3 F4 F7 F8 T7 T8 P7 P8 O1 O2

Theta 1.850 3.052** 0.737 5.387*** 2.366* 7.667*** 2.569* 2.648* 4.070** 3.034** 8.366*** 6.261*** 7.441*** 11.601***
Alpha 8.687*** 11.116*** 15.794*** 13.900*** 13.870*** 29.763*** 11.948*** 17.068*** 23.055*** 29.342*** 32.476*** 23.458*** 28.649*** 15.345***
Beta 10.223*** 10.621*** 12.942*** 8.465*** 7.047*** 9.358*** 15.278*** 14.554*** 8.508*** 7.991*** 12.368*** 12.479*** 11.850*** 9.208***
LowGamma 5.848*** 8.949*** 9.945*** 6.160*** 5.062*** 4.535*** 9.850*** 8.254*** 2.745* 4.750*** 1.411 3.720** 5.116*** 10.531***

5.1 Task Completeness & Manipulation Check
Task Perceptions. As the confounding variables, for instance, perceived difficulty [42], interest [2, 8], or search

result relevance [63], could impact the physiological responses, the stimulus used in this study has been taken care
to minimize the impact from these. In particular, we anticipate that i) all the topics should be easy to understand
(≤ 3.0) and not familiar (≤ 3.0), ii) all the search results (in RJ) provided are easy to understand (≤ 3.0), and
relatively relevant (≥ 3.0) to their submitted query.

Topic
Difficulty

Topic
Familiarity

Topic
Interest

Information
Difficulty

Information
Relevance

Self-rating Item

1

2

3

4

5

Sc
or

e

Fig. 4. Distribution of Self-rated Task Perceptions on Perceived Difficulty, Familiarity, Interest in the Topic, and Perceived
Difficulty and Relevance on the received Information.

As summarized in Figure 4, the participants have rated Topic Difficulty as 2.5 (SD: 1.1), Topic Familiarity as 2.7
(SD: 1.2), Topic Interest is 3.5 (SD: 1.1). For the search results, the participants have rated Information Difficulty as
1.9 (SD: 1.0) and Information Relevance as 4.0 (SD: 1.1). Overall, the task perceptions have met our anticipation,
all data have been processed further for analysis.

Task Durations. As reported in Table 4, the participants take an average of 23.4 (SD: 14.1) seconds to complete
reading the backstories at IN, and 10 seconds (as pre-defined) to think about a query at QF. The interaction
modality affects completion time. QS-S takes an average of 6.8 (SD: 2.5) seconds, faster than QS-T, which takes an
average of 17.7 (SD: 10.1) seconds. RJ-L takes an average of 66.0 (SD: 4.4) seconds, longer than RJ-R, which takes
an average of 49.2 (SD: 19.8) seconds.

5.2 Understanding Physiological Responses at Different Stages of Information Search
Brain Activity Responses. As presented in Figure 5, the 𝐴𝑙𝑝ℎ𝑎 bands show the most prominent differences,

with the highest F-values concentrated in the left-parietal, i.e., 𝑃7 (𝐹 [6, 112] = 32.476, 𝑝 < .001), left-occipital
regions, i.e., 𝑂1 (𝐹 [6, 112] = 28.649, 𝑝 < .001), and right-frontal regions, i.e., 𝐹4 (𝐹 [6, 112] = 29.763, 𝑝 < .001).
The differences observed in 𝐴𝑙𝑝ℎ𝑎 band likely reflect task-related variations in attention allocation and spatial
processing [44, 47], e.g., for filtering out the irrelevant information[63], across different information stages.
The 𝐵𝑒𝑡𝑎 bands also show significant differences across all regions. As 𝐵𝑒𝑡𝑎 activity is commonly associated
with active thinking and problem solving [35, 65], the results suggest that these processes might be similarly
and significantly engaged across all conditions. Lastly, the 𝑇ℎ𝑒𝑡𝑎 and 𝐿𝑜𝑤𝐺𝑎𝑚𝑚𝑎 bands have generally lower
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Fig. 5. Topography which shows the significance of difference (F-value from Friedman Test) between brain response in the
baseline, EYEOPEN and the 6 search stages (IN, QF, QS-T, QS-S, RJ-R, RJ-L). Highlighted channels indicate the differences
are significant at 𝑝 < .001. Greenhouse-Geisser correction is applied to adjust for the violations of sphericity.

Table 7. Pairwise Wilcoxon Test Results for the EEG P7 Alpha bands. 𝑝 < .01**, < .001***. One-step Bonferroni Correction
applied for multiple comparisons.

A EYEOPEN IN

B IN QF QS-S QS-T RJ-R RJ-L QF QS-S QS-T RJ-R RJ-L

W 45 3 39 65 32 4 7 14 8 65 9
p .503 .000*** .254 1 .102 .000*** .001** .004** .001** 1 .001**

A QF QS-S QS-T RJ-R

B QS-S QS-T RJ-R RJ-L QS-T RJ-R RJ-L RJ-R RJ-L RJ-L

W 0 1 16 103 65 10 0 10 1 16
p .000*** .000*** .007** 1 1 .002** .000*** .002** .000*** .007**

F-values. This might indicate that both𝑇ℎ𝑒𝑡𝑎 and 𝐿𝑜𝑤𝐺𝑎𝑚𝑚𝑎 are less sensitive to the specific differences among
the search stages compared to the other bands.

EYEOPEN IN QF QS-T QS-S RJ-L RJ-R
Information Activity Stage

0.4

0.2

0.0

0.2

0.4

M
ea

n 
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Fig. 6. Violin plot represents the distribution of mean Relative Pupil Dilation (RPD) across the baseline EYEOPEN and the 6
search stages (IN, QF, QS-T, QS-S, RJ-R, RJ-L).

Pupil Dilation. In a constantly illuminated condition, Relative Pupil Dilation (RPD) can indicate attention and
exerted cognitive load [21]. As demonstrated in Figure 6, both modalities for QS show larger RPD compared to
the other stages. The Friedman test revealed significant difference (𝐹 [6, 100] = 37.962, 𝑝 < .001) among search
stages (refer to Table 8). And the post-hoc test reveals that both QS-S and QS-T are significantly different from
EYEOPEN and all other stages. In particular,𝑊 (EYEOPEN,QS-S) = 4, 𝑝 < .01,𝑊 (EYEOPEN,QS-T) = 1, 𝑝 < .001,
𝑊 (IN,QS-S) = 0, 𝑝 < .001,𝑊 (IN,QS-T) = 0, 𝑝 < .001,𝑊 (QF,QS-S) = 0, 𝑝 < .001,𝑊 (QF,QS-T) = 3, 𝑝 < .01,
𝑊 (RJ-R,QS-S) = 0, 𝑝 < .001,𝑊 (RJ-R,QS-T) = 0, 𝑝 < .001,𝑊 (RJ-L,QS-T) = 19, 𝑝 < .05. This result might indicate
the demanding efforts for formulating and expressing queries in text or speech to the external system [57].
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Table 8. Friedman Statistical Testing Results comparing among all search stages and EYEOPEN. 𝑝 < .001***.

Data Type Feature F p

EDA [6,112] Mean Mixed EDA 1.321 0.254
Mean SCL 1.244 0.290
Mean SCR 0.259 0.000***

PUPIL [6, 100] Mean RPD 37.962 0.000***

Peripheral Responses. Statistical testing results in Table 8 found no significant difference in the mixed or tonic
EDA values (SCL) . Yet, a significant difference is revealed in phasic values, SCR (𝐹 [6, 112] = 5.259, 𝑝 < .001).

5.3 The influence of Cognitive Intents: Comparing Eye-Driven Activities
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(a) Friedman test results of EEG𝐴𝑙𝑝ℎ𝑎 band. Highlighted channels
indicate the differences are significant at 𝑝 < .001.
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(b) Changes in Relative Pupil Diameter (RPD) during
the first 15 seconds following stage onset. The values
are subtracted from the value at the first second.

Fig. 7. The physiological responses over 3 eye-driven activities with different intentions, EYEOPEN, IN, and RJ-R.

The stages, EYEOPEN, IN, and RJ-R, require visual engagement but vary in cognitive demands and intentionality.
As demonstrated in Figure 7a, the Friedman test reveals significant differences in the temporal-parietal-occipital
regions on the right hemisphere among the 3 stages. This suggests that cognitive demands or the focus of
attention differ primarily in these areas. In particular, the post-hoc Wilcoxon test reveals that the 𝐴𝑙𝑝ℎ𝑎 band
during EYEOPEN is significantly different than during IN at T8,𝑊 (EYEOPEN, IN) = 9, 𝑝 < .01. When comparing
to RJ-R, the difference found at T8,𝑊 (EYEOPEN, RJ-R) = 11, 𝑝 < .01, and P8,𝑊 (EYEOPEN, RJ-R) = 26, 𝑝 < .05.
Besides, the 𝑇ℎ𝑒𝑡𝑎 bands also found significant differences at occipital regions. More specifically, 𝑇ℎ𝑒𝑡𝑎 at O1
differs between EYEOPEN and RJ-R,𝑊 (EYEOPEN, RJ-R) = 27, 𝑝 < .05, and at O2 differs between IN and RJ-R,
𝑊 (IN, RJ-R) = 9, 𝑝 < .01.

The mean RPD at EYEOPEN does not significantly differ from IN,𝑊 (EYEOPEN, IN) = 63, 𝑝 > .05, or RJ-R
𝑊 (EYEOPEN, RJ-R) = 35, 𝑝 > .05. But it is significantly different between IN and RJ-R,𝑊 (IN, RJ-R) = 1, 𝑝 < .001.
Figure 7b illustrates the changes in pupillary responses during the first 15 seconds (align with the shortest stage,
EYEOPEN), normalized to the average value of the onset second. At EYEOPEN, as participants stared at the screen,
their pupils dilated overall, reflecting heightened attention and cognitive engagement. During IN, the pupillary
responses remained relatively stable with a slight increase. This suggests the participants might sustain attention
or consistent cognitive processing to comprehend and recognize their task. In contrast, at RJ-R, the pupil diameters
generally contracted with a convex response at the beginning. This might imply a brief period of heightened
attention or arousal, possibly due to curiosity or interest when the search result first appeared, followed by a
gradual decline.
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5.4 The Influence of Interaction Modalities
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(a) QS-S v.s. QS-T
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(b) RJ-R v.s. RJ-L

Fig. 8. Topography which shows the significance of difference (W-value) between brain responses between interaction
modalities. Bonferroni Correction applied. Highlighted channels indicate the differences are significant at 𝑝 < .05.

As presented in Figure 8a, no significant difference is found between QS-T and QS-S for query submission. And
the RPD shows no significant difference,𝑊 (QS-S,QS-T) = 21, 𝑝 > .05.

Comparing between RJ-R and RJ-L, the differences are observed mainly at the parietal-occipital regions (i.e., P7,
O1, O2) for both𝑇ℎ𝑒𝑡𝑎 and 𝐴𝑙𝑝ℎ𝑎 bands (refer to Figure 8b):𝑊 (P7,Theta) = 22, 𝑝 < .05,𝑊 (P7,Alpha) = 16, 𝑝 <

.01,𝑊 (O1,Theta) = 0, 𝑝 < .001,𝑊 (O1,Alpha) = 11, 𝑝 < .01,𝑊 (O2,Theta) = 0, 𝑝 < .001,𝑊 (O2,Alpha) =

16, 𝑝 < .01. There is also a significant difference observed at the frontal region for𝑇ℎ𝑒𝑡𝑎 band,𝑊 (F4) = 15, 𝑝 < .01.
Besides, the RPD shows a significant difference,𝑊 (RJ-R, RJ-L) = 1, 𝑝 < .001.

5.5 Classification Performance of the Sensor Data
5.5.1 Experimental Setting. The objective is to classify all search stages in considering interaction modalities, IN,
QF, QS-S, QS-T, RJ-R, and RJ-L. We categorized the sensor data into 2 types – physiological and behavioral data –
and 5 groups – including EDA, EEG, PUPIL, GAZE, and MOTION. MOTION combines the wrist and head motion.

Classifiers. The classification experiment was developed with the Scikit-learn Python Library. The support
vector machine (SVM) with an RBF kernel was used as the base model [8, 58]. We have built two types of
models, one with only features from every single type of sensor data (results refer to Section 5.5.2), the other
was a late-decision-fusion model which combines two or more trained single-sensor models (results refer to
Section 5.5.3). We ensemble the model with a soft voting classifier with equal weights assigned to the base
models [30]. The soft voting classifier calculates the argmax of the sums of the predicted probabilities computed
by the base models.

Dimension Reduction & Hyper-Parameter Tuning. Studies involving multiple physiological data often result in a
large number of extracted features [21, 30], necessitating dimension reduction for the subsequent process, e.g.,
model training. We implemented with GridSearchCV from the Scikit-learn library, and tuned the model with
different dimension reduction techniques, including Linear Discriminant Analysis, Neighborhood Components
Analysis, and Select-K-Best (using mutual information or F-statistic), and parameters including the regularization
parameter (C), kernel coefficient (gamma), and polynomial degree.

Evaluation. We conducted Leave-One-participant-Out (LOO) cross-validation and reported accuracy and F1-
macro metrics for the evaluation. LOO cross-validation assesses the performance of a model by iteratively training
on data from all participants except one, which is reserved for testing. In this project, which involves data from 20
participants, each model was evaluated 20 times, with the data from 19 participants used for training and the data
from 1 participant used for testing each time6. Accuracy reflects the overall correctness of a model’s predictions,
while the F1-macro score addresses class imbalance by averaging performance equally across all classes, offering
6Note that as 2 participants are missing the eye-tracking data, the models involving PUPIL or GAZE were evaluated 18 times.
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Table 9. Classification Performance on SVM with RBF kernel of single sensor groups using features extracted from different
time windows. The evaluation metrics are Accuracy and F1-macro (with standard deviation).

Sensor Group EDA EEG PUPIL MOTION GAZE
Feature Window Accuracy F1-macro Accuracy F1-macro Accuracy F1-macro Accuracy F1-macro Accuracy F1-macro

1s–0s overlap 0.273 (0.065) 0.170 (0.067) 0.324 (0.092) 0.246 (0.116) 0.549 (0.145) 0.530 (0.153) 0.452 (0.114) 0.409 (0.098) 0.295 (0.124) 0.191 (0.139)
2s–1s overlap 0.273 (0.065) 0.170 (0.067) 0.324 (0.092) 0.246 (0.116) 0.549 (0.145) 0.530 (0.153) 0.452 (0.114) 0.409 (0.098) 0.295 (0.124) 0.191 (0.139)
4s–2s overlap 0.282 (0.067) 0.146 (0.067) 0.328 (0.118) 0.252 (0.128) 0.585 (0.151) 0.574 (0.152) 0.506 (0.077) 0.424 (0.071) 0.403 (0.104) 0.299 (0.126)

a balanced evaluation of model effectiveness. Higher scores for both metrics indicate better model performance.
We employed the random guess baseline, which is around 17%.

5.5.2 Single-Sensor Performance. As presented in Table 9 and Figure 9, PUPIL consistently demonstrated the
best performance, while EDA was the only model to perform below baseline on F1 score. When comparing
window feature settings, we observed that 1–0 and 2–1 windows produced identical performance metrics across
all sensor groups, suggesting minimal impact of this particular window size variation. However, implementing
the 4–2 window features yielded variable effects across sensor groups. GAZE showed the most substantial
improvement with a 10.8% increase in accuracy and 10.0% increase in F1. PUPIL and MOTION demonstrated
moderate enhancements (4.4% increase in both metrics for PUPIL; 5.4% accuracy and 2.5% F1 increase for
MOTION), while EEG showed minimal improvement (1.1% increase in accuracy, 0.6% increase in F1). Interestingly,
EDA exhibited a decrease of 3.6% in F1 score.
Figure 10 reveals distinct classification patterns across models. The EDA model showed poor discriminative

capability with predictions skewed toward IN and QS-T. While EEG provided more balanced predictions, it
still favored QS-T and RJ-L. Only the PUPIL model produced well-balanced and accurate predictions across
all classes, while GAZE and MOTION models exhibited biases similar to EDA. Notably, when comparing the
eye-driven activities IN and RJ-R (which involve different cognitive intentions), only MOTION and PUPIL models
successfully differentiated between them. This suggests that similar gaze movement patterns in reading activities
may confound the GAZE model, while the wristband may lack sufficient sensitivity to capture subtle EDA
variations during these activities.
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Fig. 9. The performance in F1-macro metrics of the SVM models for single sensor groups and different time-window features.
The sensor groups are EDA, EEG, PUPIL, GAZE, and MOTION (from left to right). Error bars present 95% confidence intervals.

5.5.3 Decision-Fusion Performance. To build the fusion models, we used the features extracted from 4-second
windows with 2-second overlap.

As shown in Table 10, all fusion models surpassed the baseline performance of 17%. Surprisingly, the highest
performance was not achieved by incorporating all sensor groups. While the comprehensive model including
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Fig. 10. Confusion Matrix of single sensor groups with 4 seconds with 2-second overlap time window features.

Table 10. Classification Performance of SVM with RBF kernel of fusion models and 4-2 window features. The highest and
lowest in terms of F1 scores are highlighted in bold text. The evaluation metrics are Accuracy and F1-macro (with standard
deviation).

EEG PUPIL MOTION GAZE Accuracy F1 PUPIL MOTION GAZE Accuracy F1
✓ ✓ ✓ ✓ 0.637 (0.143) 0.609 (0.158) ✓ ✓ ✓ 0.671 (0.147) 0.645 (0.161)
✓ ✓ ✓ – 0.570 (0.115) 0.525 (0.129) ✓ ✓ – 0.551 (0.146) 0.508 (0.155)
✓ ✓ – ✓ 0.552 (0.159) 0.519 (0.159) ✓ – ✓ 0.570 (0.154) 0.534 (0.164)
✓ – ✓ ✓ 0.569 (0.170) 0.537 (0.184) – ✓ ✓ 0.556 (0.165) 0.531 (0.164)
– ✓ ✓ ✓ 0.647 (0.147) 0.614 (0.145) ✓ – – 0.555 (0.133) 0.533 (0.137)
✓ ✓ – – 0.535 (0.141) 0.499 (0.147) – ✓ – 0.452 (0.114) 0.396 (0.121)
✓ – ✓ – 0.475 (0.108) 0.405 (0.107)

EEG

– – ✓ 0.490 (0.124) 0.430 (0.123)
✓ – – ✓ 0.525 (0.135) 0.458 (0.148)
– ✓ ✓ – 0.598 (0.154) 0.580 (0.139) MOTION GAZE Accuracy F1
– ✓ – ✓ 0.591 (0.146) 0.550 (0.150) ✓ ✓ 0.645 (0.153) 0.621 (0.146)
– – ✓ ✓ 0.543 (0.114) 0.486 (0.124) ✓ – 0.597 (0.111) 0.590 (0.119)
✓ – – – 0.329 (0.090) 0.234 (0.099)

PUPIL
– ✓ 0.549 (0.192) 0.507 (0.184)

– ✓ – – 0.520 (0.104) 0.502 (0.106)
– – ✓ – 0.484 (0.075) 0.471 (0.076) GAZE Accuracy F1

EDA

– – – ✓ 0.425 (0.103) 0.328 (0.116) MOTION
✓ 0.529 (0.116) 0.484 (0.121)

all sensors yielded an F1 score of 60.9% (SD: 15.8%) and accuracy of 63.7% (SD: 14.3%), excluding EDA produced
better results with an F1 score of 64.5% (SD: 16.1%) and accuracy of 67.1% (SD: 14.7%). Combinations including
GAZE with other sensor groups demonstrated consistently strong performance. The MOTION+PUPIL+GAZE
configuration achieved the second-highest F1 score of 62.1% (SD: 14.6%), while adding EDA to this combination
slightly reduced performance to an F1 score of 61.4% (SD: 14.5%). EEG+GAZE+PUPIL and EEG+GAZE+MOTION
combinations yielded comparable results with F1 scores of 53.4% (SD: 16.4%) and 53.1% (SD: 16.4%), respectively.

The weakest performing combinations involved EDA paired with either EEG or GAZE, resulting in F1 scores
of 23.4% (SD: 9.9%) and 32.8% (SD: 11.6%) with corresponding accuracies of 32.9% (SD: 9%) and 42.5% (SD: 10.3%),
respectively. These combinations proved substantially less effective for the classification task.

Notably, the model using only physiological groups (EEG+EDA+PUPIL) achieved comparable performance to
the model using only behavioral groups (GAZE+MOTION), with F1 scores of 49.9% (SD: 14.7%) and 48.4% (SD:
12.1%), and accuracies of 53.5% (SD: 14.1%) and 52.9% (SD: 11.6%), respectively. This suggests that physiological
and behavioral groups contribute useful but distinct information to the classification task.

6 Discussion & Limitation
This section broadly discusses our results and the implications and opportunities that it hints towards. It also
identifies the limitations and discusses the ecological validity of the released dataset.
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6.1 RQ1. The Influence of Cognitive Intents on the Physiological Responses
Our first research question investigates whether varying cognitive intents during different search stages influence
the physiological responses. To address this, we performed statistical analyses comparing all search stages (refer
to Section 5.2), and further analyses focusing on comparing EYEOPEN, IN, and RJ-R (refer to Section 5.3) – each
representing eye-driven activities but with distinct intents.

Our results showed that when comparing all stages, the EEG 𝐴𝑙𝑝ℎ𝑎 band activity differs across search stages at
all regions, with particularly the highest statistical values observed at the left-parietal (P7), right-frontal (F4) and
left-occipital (O1) regions, reflecting shifts in attention due to the visual, audio or spatial processing demands, and
in decision-making processing. The EEG 𝐵𝑒𝑡𝑎 also revealed differences across all regions, suggesting sustained
cognitive engagement. The statistically significant differences in phasic EDA indicate arousal changes.
Our findings might suggest that during stages of information searching, the participants were continuously

engaged in active thinking and problem-solving cognitive processing to navigate and evaluate information. The
statistically significant differences imply the influence of both interaction modalities and cognitive intents.
To examine this more closely, we then focused on the eye-driven stages: EYEOPEN, IN, and RJ-R, which have

the same interaction modality but different intents. Our results that EEG 𝐴𝑙𝑝ℎ𝑎 differed in temporal-parietal
regions suggest that attentional focus and cognitive effort vary depending on the intent behind gaze movements.
Considering the possible cognitive activities participants might engage in during these stages, at EYEOPEN,

participants only need to focus on the screen and relax. At IN, participants may engage in cognitive processes such
as comprehending information, retrieving memories, assessing personal interest, and updating knowledge gaps,
which drive subsequent actions [43, 49]. At RJ-R, beyond comprehension, participants also evaluated information
based on factors such as usefulness and topical relevance, ultimately deciding whether to accept it [1, 26, 49].
Taken together, and in alignment with existing findings, our results indicated the lack of significant difference
between IN and RJ-R implies these two tasks engage similar neural mechanisms, while EYEOPEN appears to invoke
distinct attentional shifts.

6.2 RQ2. The Influence of Interaction Modalities on the Physiological Responses
Our second research question explores whether different interaction modalities, at search stages, influence the
physiological responses. To address this, we performed pairwise comparisons between search stages that share
the same cognitive intents but differ in interaction method, specifically, QS-S and QS-T, and RJ-R and RJ-L (refer to
Section 5.4).
As mentioned earlier, our results showed that EEG 𝐴𝑙𝑝ℎ𝑎 activity at the left-parietal (P7) and left-occipital

(O1) regions exhibited the most prominent statistical values across all search stages, indicating dynamics in
visual, auditory, or spatial processing demands. This might suggest that when the intents are the same, the ways
of interaction influence how the brain processes information, mainly related to parts that control the sensory
interactions. The pairwise analysis revealed statistical differences in the EEG 𝑇ℎ𝑒𝑡𝑎 and 𝐴𝑙𝑝ℎ𝑎 activities at the
parietal-occipital regions (P7, O1, O2), and also the right-frontal regions (F4) between RJ-R and RJ-L. This might
suggest that receiving the search results by reading or by listening primarily affects the cognitive processes
related to memory, visuospatial or auditory processing, and temporal integration.

In this dataset, the lengths of the queries submitted by participants between QS-T and QS-S were similar. The
text queries had an average of 8 words, ranging from 2 to 19 words, and the voice queries had an average of
7.8 words, ranging from 2 to 20 words. However, the interaction durations differed. Typing required more time
(average: 17.7 seconds) compared to speaking (average: 6.8 seconds). These differences in interaction duration and
underlying cognitive processing might manifest in changing physiological data [23]. Interestingly, no significant
differences were observed in any brain regions or peripheral physiological data between QS-T and QS-S. This
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suggests that the modality used to express the query – typed or spoken – may not significantly affect cognitive
load or neural engagement captured by the physiological data.

For future research, depending on the research goals, we suggest that wearable EEG headsets should prioritize
sensor placement at parietal-occipital sites to effectively track modality-related cognitive shifts. For real-time
attention and workload estimation, adding frontal electrodes (e.g., F4) can help detect mental effort differences
in information reception tasks, or integrating eye-tracking and EDA sensors in smart wearable devices. The
wearable systems (e.g., AR glasses, brain-sensing headbands) [31] should adjust content delivery, optimizing
input/output modalities for cognitive efficiency.

6.3 RQ3. Classification Performance of Physiological and Behavioral Data
Our third research question RQ3 examines the ability of physiological and behavioral data to discriminate between
search stages. To address this, we develop machine-learning models and compare their performance in classifying
search stages using both individual and combined sensor groups (refer to Section 5.5).
Overall, the physiological data yielded varying classification performances. The model using only EDA data

demonstrated low performance, with the average F1 scores only marginally better than the baseline. Then, the
fusion models that incorporate EDA also showed reduced performance. These suggest that cognitive processes
during search stages do not strongly influence wristband-captured EDA in this controlled setup. EEG data
demonstrated limited capacity in discriminating the search stages. The minimal impacts of feature window
size might suggest that similar neural responses occur within short time frames and remain consistent. This
aligns with EEG characteristic of capturing rapid neural events, where extending the time window provides
little additional information. PUPIL data exhibited the best performance, with the single model and majority
of the fusion models achieving average F1 scores exceeding 50%. Pupillary response is usually used to indicate
attention and cognitive load [60]. This high performance might imply varying inherent demands of cognitive load
across search stages. Therefore, researchers should be cautious when using pupillary responses to investigate
experimental factors in different contexts to ensure validity.
Behavioral data, including GAZE and MOTION, also discriminated certain search stages with moderate

performance. But the skewed predictions shown in Figure 10 reflect that they mainly captured the variants in
interaction modalities rather than cognitive intent. The fusion models combining these with physiological data
led to minor improvements. This further suggests they are useful for context detection but limited for detecting
subtle activities.

Besides, the improvements in GAZE, PUPIL, and MOTION models with longer feature windows suggest these
modalities benefit from capturing complete behavioral sequences. Ocular and motor responses likely unfold
over longer periods and contain meaningful temporal patterns that shorter windows fail to detect. For instance,
complete gaze patterns, pupillary reactions to cognitive load, and motion sequences associated with different
tasks may require several seconds to fully manifest their distinctive characteristics.

Overall, the differential performance across sensor groups further validates their varying effectiveness in this
classification task, and underscores the importance of sensor selection based on the specific cognitive processes
under investigation. And the impacts of feature window sizes suggest that optimal feature extraction windows
should be tailored to each sensor’s specific temporal dynamics rather than applying uniform parameters across all
modalities. For real-time applications, this may necessitate modality-specific processing pipelines with different
temporal configurations to maximize classification performance.

6.4 Limitations & Ecological Validity
Our dataset serves as a baseline for understanding and assessing consumer-grade sensor data during information
searching in a controlled lab setting. However, we note a number of limitations that researchers should be aware
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of when using the dataset. The size of the SenseSeek is relatively small compared to other sensor datasets, with
only 20 participants, where young adults are over-represented. While tasks were presented in English and all
participants had professional working proficiency in English, the majority of participants are not native speakers.
The dataset only contains eye-tracking data from 18 participants due to a device error. In addition, tasks like
speaking, listening, and typing did not necessarily require participants to focus on the screen. This naturally
resulted in missing eye-tracking data, which reflects inherent limitations of applying eye-tracking to such tasks.

The data was collected in a controlled lab environment with simulated searches, which may not fully represent
real-world distractions and variability. In a natural setting, sensing data can be affected by factors such as contents,
visual elements, subjective perceptions, and external environments. We focused specifically on information
searching scenarios while controlling variables such as the type of information need (search goal), topic difficulty,
familiarity, information complexity, and relevance using a simplified interaction system. While this approach
may not perfectly reflect real-life user behaviors, it provides clearer insights into how sensing data responds
during information activities. This methodology helps analyze distinct search stages, though it might not capture
how these stages seamlessly integrate in everyday use.

Despite our controls, some intricate activities retained variability in their natural state, revealing the dynamic
nature of human-information interaction. For example, we separated query formulation from submission to
isolate underlying processes. This acknowledges differences between voice interactions (where users may pause
before speaking) and text-based interactions (where thinking and typing occur simultaneously). In our study,
some participants reported mind-wandering during query formulation, while others used the time for focused
thinking, and a few needed to recall their information need before forming queries. As a result, cognitive processes
and corresponding physiological responses still overlapped across search stages.
Moreover, search stage durations varied considerably, from 6.8 to 66.0 seconds on average, highlighting the

dynamic nature of information searching and the importance of context-specific factors. This variability likely
affected physiological responses, as longer stages may elicit more complex responses than shorter ones. In
contrast to most existing physiological datasets, which typically involve longer engagement periods, this duration
variability could benefit studies featuring rapid cognitive transitions of short-term interactions that characterize
real-world search interactions.
Lastly, our study employed only consumer-grade sensors that offer lower accuracy and sampling rates than

medical-grade equipment; hence, there is a possibility of artifacts or missed responses that may have impacted
the results. As a trade-off, these sensors are closer to the actual technologies users encounter in everyday settings.
Future research could bridge this gap by implementing a dual-monitoring approach, using both consumer- and
medical-grade or more advanced equipment simultaneously to validate findings while maintaining ecological
validity. Additionally, larger sample sizes would strengthen statistical analysis and help distinguish true physio-
logical patterns. Advantages of consumer-grade sensors, such as accessibility, comfort, and ease of use, allow for
a scalable version of this dataset.
A future extension of the SenseSeek dataset could focus on featuring participants 1) of an older age, 2) with

their native language, and 3) with neuro-diversity features, or featuring the tasks with 4) complex information
needs, 5) personalized search results (e.g., conversational interaction), and 6) multi-turn interactions.

7 Conclusion and Future Work
We presented SenseSeek, a comprehensive dataset examining the ramifications of passive sensing data and
information activity, particularly focusing on the information search process. The dataset comprises physiological
and behavioral data from 20 participants across 235 trials, 940 search stages in a controlled lab environment, where
each participant completed simulated search tasks. Both the raw and cleaned data are made publicly available,
along with 258 extracted features. To provide contextual richness, it also contains the task materials, self-rated
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perceptions, and gaze-annotated screen recordings. We validate the usefulness of the dataset by investigating how
cognitive intents and interaction modalities affect information searching stages and evaluating the effectiveness
of sensor data in distinguishing these stages. Statistically significant differences were observed in EEG and PUPIL
data, particularly influenced by cognitive intents and interaction modality (reading vs. listening). Search stages
classification was performed using features from individual or multiple sensor groups. Our analysis showed that
PUPIL features performed best, and EDA features performed worst. The varying effectiveness of sensor groups
underscores the need for sensor selection based on specific cognitive processes and modality-specific processing
configurations to optimize classification performance in multi-modality models.

Future work can further explore the relationship between the physiological signals and the variables involved
in search stages. In particular, the SenseSeek dataset can be used to advance knowledge on characterizing the
perception of topic familiarity, topic difficulty, and relevance with multiple physiological signals.
By making this dataset publicly available and deepening our understanding of these variations, we hope to

contribute to the development of passive sensors and multimedia information access systems. For instance,
designing adaptive search interfaces that respond to users’ cognitive needs in real-time. This dataset lays a
foundation for future research exploring more complex search activities and provides a rich source of data for
developing algorithms that monitor user experiences such as attention, workload, and stress during information
interaction. Researchers can leverage this baseline data to train computational models before applying them in
naturalistic environments, ensuring more reliable transitions from controlled to real-world applications.

8 Dataset and Code Availability
The use of the SenseSeek dataset is limited to academic research purposes. The SenseSeek dataset is publicly available
and can be accessed on the OSF platform at https://osf.io/waunb/?view_only=94756f9d2c7a49e094ae42d494c9516a.
Additional descriptions of the dataset are included in the appendices. The code used for data processing, analysis,
and model training is also available at https://github.com/ADMSCentre/SenseSeek-Dataset-code. The repository
contains the instructions for the dataset, several Jupyter Notebook files with data analysis and visualizations, and
Python source files for model training. All required packages are listed in the requirements.txt file.

Acknowledgments
This research is partially supported by the Australian Research Council and the Australian Research Council
Centre of Excellence for Automated Decision-Making and Society (DE200100064, CE200100005).

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 9, No. 3, Article 92. Publication date: September 2025.

https://osf.io/waunb/?view_only=94756f9d2c7a49e094ae42d494c9516a
https://github.com/ADMSCentre/SenseSeek-Dataset-code


SenseSeek Dataset: Multimodal Sensing to Study Information Seeking Behaviors • 92:21

References
[1] Marco Allegretti, Yashar Moshfeghi, Maria Hadjigeorgieva, Frank E. Pollick, Joemon M. Jose, and Gabriella Pasi. 2015. When Relevance

Judgement is Happening? An EEG-based Study. In Proceedings of the 38th International ACM SIGIR Conference on Research and
Development in Information Retrieval (Santiago, Chile) (SIGIR ’15). Association for Computing Machinery, New York, NY, USA, 719–722.
doi:10.1145/2766462.2767811

[2] Ioannis Arapakis, Miguel Barreda-Ángeles, and Alexandre Pereda-Baños. 2019. Interest as a Proxy of Engagement in News Reading:
Spectral and Entropy Analyses of EEG Activity Patterns. IEEE Transactions on Affective Computing 10, 1 (2019), 100–114. doi:10.1109/
TAFFC.2017.2682089

[3] Ebrahim Babaei, Benjamin Tag, Tilman Dingler, and Eduardo Velloso. 2021. A Critique of Electrodermal Activity Practices at CHI. In
Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems (Yokohama, Japan) (CHI ’21). Association for Computing
Machinery, New York, NY, USA, Article 177, 14 pages. doi:10.1145/3411764.3445370

[4] Swarnali Banik, Sougata Sen, Snehanshu Saha, and Surjya Ghosh. 2024. Towards Reducing Continuous Emotion Annotation Effort
During Video Consumption: A Physiological Response Profiling Approach. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 8, 3,
Article 91 (Sept. 2024), 32 pages. doi:10.1145/3678569

[5] Oswald Barral, Manuel J.A. Eugster, Tuukka Ruotsalo, Michiel M. Spapé, Ilkka Kosunen, Niklas Ravaja, Samuel Kaski, and Giulio
Jacucci. 2015. Exploring Peripheral Physiology as a Predictor of Perceived Relevance in Information Retrieval. In Proceedings of the 20th
International Conference on Intelligent User Interfaces (Atlanta, Georgia, USA) (IUI ’15). Association for Computing Machinery, New York,
NY, USA, 389–399. doi:10.1145/2678025.2701389

[6] Jordan J. Bird, Luis J. Manso, Eduardo P. Ribeiro, Anikó Ekárt, and Diego R. Faria. 2018. A Study on Mental State Classification using
EEG-based Brain-Machine Interface. In 2018 International Conference on Intelligent Systems (IS) (Funchal, Portugal). IEEE, 795–800.
doi:10.1109/IS.2018.8710576

[7] Marius Bock, Hilde Kuehne, Kristof Van Laerhoven, and Michael Moeller. 2024. WEAR: An Outdoor Sports Dataset for Wearable
and Egocentric Activity Recognition. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 8, 4, Article 175 (Nov. 2024), 21 pages.
doi:10.1145/3699776

[8] Nattapat Boonprakong, Xiuge Chen, Catherine Davey, Benjamin Tag, and Tilman Dingler. 2023. Bias-Aware Systems: Exploring
Indicators for the Occurrences of Cognitive Biases When Facing Different Opinions. In Proceedings of the 2023 CHI Conference on Human
Factors in Computing Systems (Hamburg, Germany) (CHI ’23). Association for Computing Machinery, New York, NY, USA, Article 27,
19 pages. doi:10.1145/3544548.3580917

[9] Patrícia Bota, Joana Brito, Ana Fred, Pablo Cesar, and Hugo Silva. 2024. A real-world dataset of group emotion experiences based on
physiological data. Scientific Data 11, 1 (2024), 116.

[10] Georg Buscher, Andreas Dengel, Ralf Biedert, and Ludger V Elst. 2012. Attentive documents: Eye tracking as implicit feedback for
information retrieval and beyond. ACM Transactions on Interactive Intelligent Systems (TiiS) 1, 2 (2012), 1–30.

[11] Luis Cabañero-Gomez, Ramon Hervas, Ivan Gonzalez, and Luis Rodriguez-Benitez. 2021. eeglib: A Python module for EEG feature
extraction. SoftwareX 15 (2021), 100745. doi:10.1016/j.softx.2021.100745

[12] Michael J. Cole, Chathra Hendahewa, Nicholas J. Belkin, and Chirag Shah. 2014. Discrimination between Tasks with User Activity
Patterns during Information Search. In Proceedings of the 37th International ACM SIGIR Conference on Research and Development in
Information Retrieval (Gold Coast, Queensland, Australia) (SIGIR ’14). Association for Computing Machinery, New York, NY, USA,
567–576. doi:10.1145/2600428.2609591

[13] Andrew T. Duchowski, Krzysztof Krejtz, Nina A. Gehrer, Tanya Bafna, and Per Bækgaard. 2020. The Low/High Index of Pupillary
Activity. In Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems (Honolulu, HI, USA) (CHI ’20). Association
for Computing Machinery, New York, NY, USA, 1–12. doi:10.1145/3313831.3376394

[14] Ashlee Edwards and Diane Kelly. 2017. Engaged or Frustrated? Disambiguating Emotional State in Search. In Proceedings of the
40th International ACM SIGIR Conference on Research and Development in Information Retrieval (Shinjuku, Tokyo, Japan) (SIGIR ’17).
Association for Computing Machinery, New York, NY, USA, 125–134. doi:10.1145/3077136.3080818

[15] Raya Fidel. 2012. Human Information Interaction: An Ecological Approach to Information Behavior. Mit Press.
[16] Nan Gao, Wei Shao, Mohammad Saiedur Rahaman, and Flora D. Salim. 2020. n-Gage: Predicting in-class Emotional, Behavioural

and Cognitive Engagement in the Wild. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 4, 3, Article 79 (sep 2020), 26 pages.
doi:10.1145/3411813

[17] Christoph Gebhardt, Andreas Brombach, Tiffany Luong, Otmar Hilliges, and Christian Holz. 2024. Detecting Users’ Emotional
States during Passive Social Media Use. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 8, 2, Article 77 (May 2024), 30 pages.
doi:10.1145/3659606

[18] Alberto Greco, Gaetano Valenza, Antonio Lanata, Enzo Pasquale Scilingo, and Luca Citi. 2016. cvxEDA: A Convex Optimization Approach
to Electrodermal Activity Processing. IEEE Transactions on Biomedical Engineering 63, 4 (2016), 797–804. doi:10.1109/TBME.2015.2474131

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 9, No. 3, Article 92. Publication date: September 2025.

https://doi.org/10.1145/2766462.2767811
https://doi.org/10.1109/TAFFC.2017.2682089
https://doi.org/10.1109/TAFFC.2017.2682089
https://doi.org/10.1145/3411764.3445370
https://doi.org/10.1145/3678569
https://doi.org/10.1145/2678025.2701389
https://doi.org/10.1109/IS.2018.8710576
https://doi.org/10.1145/3699776
https://doi.org/10.1145/3544548.3580917
https://doi.org/10.1016/j.softx.2021.100745
https://doi.org/10.1145/2600428.2609591
https://doi.org/10.1145/3313831.3376394
https://doi.org/10.1145/3077136.3080818
https://doi.org/10.1145/3411813
https://doi.org/10.1145/3659606
https://doi.org/10.1109/TBME.2015.2474131


92:22 • Kaixin Ji et al.

[19] Akash Gupta, Harsh Sahu, Nihal Nanecha, Pradeep Kumar, Partha Pratim Roy, and Victor Chang. 2019. Enhancing Text Using Emotion
Detected from EEG Signals. Journal of Grid Computing 17 (2019), 325–340.

[20] Kunal Gupta, SamW. T. Chan, Yun Suen Pai, Nicholas Strachan, John Su, Alexander Sumich, Suranga Nanayakkara, andMark Billinghurst.
2022. Total VREcall: Using Biosignals to Recognize Emotional Autobiographical Memory in Virtual Reality. Proc. ACM Interact. Mob.
Wearable Ubiquitous Technol. 6, 2, Article 55 (July 2022), 21 pages. doi:10.1145/3534615

[21] Jacek Gwizdka, Rahilsadat Hosseini, Michael Cole, and Shouyi Wang. 2017. Temporal Dynamics of Eye-Tracking and EEG during
Reading and Relevance Decisions. J. Assoc. Inf. Sci. Technol. 68, 10 (oct 2017), 2299–2312.

[22] Zhiyu He, Shaorun Zhang, Peijie Sun, Jiayu Li, Xiaohui Xie, Min Zhang, and Yiqun Liu. 2023. Understanding User Immersion in Online
Short Video Interaction. In Proceedings of the 32nd ACM International Conference on Information and Knowledge Management (Birmingham,
United Kingdom) (CIKM ’23). Association for Computing Machinery, New York, NY, USA, 731–740. doi:10.1145/3583780.3615099

[23] Grazia Iadarola, Angelica Poli, and Susanna Spinsante. 2021. Analysis of Galvanic Skin Response to Acoustic Stimuli by Wearable
Devices. In 2021 IEEE International Symposium on Medical Measurements and Applications (MeMeA) (Lausanne, Switzerland). IEEE, 1–6.
doi:10.1109/MeMeA52024.2021.9478673

[24] Soumy Jacob, Shoya Ishimaru, Syed Saqib Bukhari, and Andreas Dengel. 2018. Gaze-Based Interest Detection on Newspaper Articles. In
Proceedings of the 7th Workshop on Pervasive Eye Tracking and Mobile Eye-Based Interaction (Warsaw, Poland) (PETMEI ’18). Association
for Computing Machinery, New York, NY, USA, Article 4, 7 pages. doi:10.1145/3208031.3208034

[25] Mainak Jas, Denis A. Engemann, Yousra Bekhti, Federico Raimondo, and Alexandre Gramfort. 2017. Autoreject: Automated artifact
rejection for MEG and EEG data. NeuroImage 159 (2017), 417–429. doi:10.1016/j.neuroimage.2017.06.030

[26] Kaixin Ji, Danula Hettiachchi, Flora D. Salim, Falk Scholer, and Damiano Spina. 2024. Characterizing Information Seeking Processes
with Multiple Physiological Signals. In Proceedings of the 47th International ACM SIGIR Conference on Research and Development
in Information Retrieval (Washington, DC, USA) (SIGIR ’24). Association for Computing Machinery, New York, NY, USA, 12 pages.
doi:10.1145/3626772.3657793

[27] Angel Jimenez-Molina, Cristian Retamal, and Hernan Lira. 2018. Using psychophysiological sensors to assess mental workload during
web browsing. Sensors 18, 2 (2018), 458.

[28] Ryan Kaveh, Carolyn Schwendeman, Leslie Pu, Ana C. Arias, and Rikky Muller. 2024. Wireless Ear EEG to Monitor Drowsiness. Nature
Communications 15, 1 (Aug. 2024), 6520. doi:10.1038/s41467-024-48682-7

[29] Diane Kelly. 2009. Methods for Evaluating Interactive Information Retrieval Systems with Users. Foundations and Trends® in Information
Retrieval 3, 1–2 (2009), 1–224. doi:10.1561/1500000012

[30] Sander Koelstra, Christian Muhl, Mohammad Soleymani, Jong-Seok Lee, Ashkan Yazdani, Touradj Ebrahimi, Thierry Pun, Anton Nijholt,
and Ioannis Patras. 2011. Deap: A database for emotion analysis; using physiological signals. IEEE transactions on affective computing 3,
1 (2011), 18–31.

[31] Nataliya Kosmyna and Eugene Hauptmann. 2024. Are you still watching? Assessing internal and external attention in AR using
wearable brain sensing glasses. In Optical Architectures for Displays and Sensing in Augmented, Virtual, and Mixed Reality (AR, VR, MR) V,
Naamah Argaman, Hong Hua, and Daniel K. Nikolov (Eds.), Vol. 12913. International Society for Optics and Photonics, SPIE, 1291310.
doi:10.1117/12.3023316

[32] Nataliya Kosmyna and Pattie Maes. 2019. AttentivU: a Biofeedback Device to Monitor and Improve Engagement in the Workplace. In
2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, 1702–1708. doi:10.1109/
EMBC.2019.8857177

[33] Vladimir Kosonogov, Danila Shelepenkov, and Nikita Rudenkiy. 2023. EEG and peripheral markers of viewer ratings: a study of short
films. Frontiers in Neuroscience 17 (2023), 1148205. doi:10.3389/fnins.2023.1148205

[34] Carol Collier Kuhlthau. 2005. Information Search Process. CITE Seminar: Information Literacy and Pre-service Programs, Hong Kong,
China 7 (2005), 226.

[35] J. Satheesh Kumar and P. Bhuvaneswari. 2012. Analysis of Electroencephalography (EEG) Signals and Its Categorization–A Study.
Procedia Engineering 38 (2012), 2525–2536. doi:10.1016/j.proeng.2012.06.298 INTERNATIONAL CONFERENCE ON MODELLING
OPTIMIZATION AND COMPUTING.

[36] Matias Laporte, Martin Gjoreski, and Marc Langheinrich. 2023. LAUREATE: A Dataset for Supporting Research in Affective Computing
and Human Memory Augmentation. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 7, 3, Article 106 (sep 2023), 41 pages.
doi:10.1145/3610892

[37] Minji Lee, Gi-Hwan Shin, and Seong-Whan Lee. 2020. Frontal EEG Asymmetry of Emotion for the Same Auditory Stimulus. IEEE Access
8 (2020), 107200–107213. doi:10.1109/ACCESS.2020.3000788

[38] Adam Li, Jacob Feitelberg, Anand Prakash Saini, Richard Höchenberger, and Mathieu Scheltienne. 2022. MNE-ICALabel: Automatically
annotating ICA components with ICLabel in Python. Journal of Open Source Software 7, 76 (2022), 4484. doi:10.21105/joss.04484

[39] Irene Lopatovska and Ioannis Arapakis. 2011. Theories, methods and current research on emotions in library and information science,
information retrieval and human-computer interaction. Inf. Process. Manage. 47, 4 (jul 2011), 575–592. doi:10.1016/j.ipm.2010.09.001

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 9, No. 3, Article 92. Publication date: September 2025.

https://doi.org/10.1145/3534615
https://doi.org/10.1145/3583780.3615099
https://doi.org/10.1109/MeMeA52024.2021.9478673
https://doi.org/10.1145/3208031.3208034
https://doi.org/10.1016/j.neuroimage.2017.06.030
https://doi.org/10.1145/3626772.3657793
https://doi.org/10.1038/s41467-024-48682-7
https://doi.org/10.1561/1500000012
https://doi.org/10.1117/12.3023316
https://doi.org/10.1109/EMBC.2019.8857177
https://doi.org/10.1109/EMBC.2019.8857177
https://doi.org/10.3389/fnins.2023.1148205
https://doi.org/10.1016/j.proeng.2012.06.298
https://doi.org/10.1145/3610892
https://doi.org/10.1109/ACCESS.2020.3000788
https://doi.org/10.21105/joss.04484
https://doi.org/10.1016/j.ipm.2010.09.001


SenseSeek Dataset: Multimodal Sensing to Study Information Seeking Behaviors • 92:23

[40] Dominique Makowski, Tam Pham, Zen J. Lau, Jan C. Brammer, François Lespinasse, Hung Pham, Christopher Schölzel, and S. H. Annabel
Chen. 2021. Neurokit2: A Python Toolbox for Neurophysiological Signal Processing. Behavior Research Methods 53, 4 (Aug. 2021),
1689–1696. doi:10.3758/s13428-020-01516-y

[41] Joel T Martin, Joana Pinto, Daniel P Bulte, and Manuel Spitschan. 2021. PyPlr: A versatile, integrated system of
hardware and software for researching the human pupillary light reflex. Behavior Research Methods (2021), 2720–2739.
arXiv:https://link.springer.com/content/pdf/10.3758/s13428-021-01759-3.pdf doi:10.3758/s13428-021-01759-3

[42] Fernando Martínez-Santiago, Alejandro A Torres-García, Arturo Montejo-Ráez, and Nicolás Gutiérrez-Palma. 2023. The impact of
reading fluency level on interactive information retrieval. Universal Access in the Information Society 22, 1 (2023), 51–67.

[43] Dominika Michalkova, Mario Parra-Rodriguez, and Yashar Moshfeghi. 2022. Information Need Awareness: An EEG Study. In Proceedings
of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval (Madrid, Spain) (SIGIR ’22).
Association for Computing Machinery, New York, NY, USA, 610–621. doi:10.1145/3477495.3531999

[44] Randall K. Minas, Robert F. Potter, Alan R. Dennis, Valerie Bartelt, and Soyoung Bae. 2014. Putting on the Thinking Cap: Using
NeuroIS to Understand Information Processing Biases in Virtual Teams. Journal of Management Information Systems 30, 4 (2014), 49–82.
doi:10.2753/MIS0742-1222300403

[45] Shayan Mirjafari, Kizito Masaba, Ted Grover, Weichen Wang, Pino Audia, Andrew T. Campbell, Nitesh V. Chawla, Vedant Das Swain,
Munmun De Choudhury, Anind K. Dey, Sidney K. D’Mello, Ge Gao, Julie M. Gregg, Krithika Jagannath, Kaifeng Jiang, Suwen Lin, Qiang
Liu, Gloria Mark, Gonzalo J. Martinez, Stephen M. Mattingly, Edward Moskal, Raghu Mulukutla, Subigya Nepal, Kari Nies, Manikanta D.
Reddy, Pablo Robles-Granda, Koustuv Saha, Anusha Sirigiri, and Aaron Striegel. 2019. Differentiating Higher and Lower Job Performers
in the Workplace Using Mobile Sensing. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies 3, 2 (June
2019), 1–24. doi:10.1145/3328908

[46] Alistair Moffat, Peter Bailey, Falk Scholer, and Paul Thomas. 2014. Assessing the Cognitive Complexity of Information Needs. In
Proceedings of the 2014 Australasian Document Computing Symposium (Melbourne, VIC, Australia) (ADCS ’14). ACM, New York, NY,
USA, Article 97, 4 pages. doi:10.1145/2682862.2682874

[47] Patricia L. Moravec, Randall K. Minas, and Alan R. Dennis. 2019. Fake News on Social Media: People Believe What They Want to Believe
When it Makes No Sense At All. MIS Quarterly 43, 4 (2019), pp. 1343–1360, A1–A13. https://www.jstor.org/stable/26848107

[48] Yashar Moshfeghi and Joemon M. Jose. 2013. An effective implicit relevance feedback technique using affective, physiological and
behavioural features. In Proceedings of the 36th International ACM SIGIR Conference on Research and Development in Information Retrieval
(Dublin, Ireland) (SIGIR ’13). Association for Computing Machinery, New York, NY, USA, 133–142. doi:10.1145/2484028.2484074

[49] Yashar Moshfeghi and Frank E. Pollick. 2018. Search Process as Transitions Between Neural States. In Proceedings of the 2018 World
Wide Web Conference (Lyon, France) (WWW ’18). International World Wide Web Conferences Steering Committee, Republic and Canton
of Geneva, CHE, 1683–1692. doi:10.1145/3178876.3186080

[50] Yashar Moshfeghi, Peter Triantafillou, and Frank Pollick. 2019. Towards Predicting a Realisation of an Information Need based on Brain
Signals. In The World Wide Web Conference (San Francisco, CA, USA) (WWW ’19). Association for Computing Machinery, New York, NY,
USA, 1300–1309. doi:10.1145/3308558.3313671

[51] Yashar Moshfeghi, Peter Triantafillou, and Frank E Pollick. 2016. Understanding Information Need: An fMRI Study. In Proceedings of the
39th International ACM SIGIR Conference on Research and Development in Information Retrieval (Pisa, Italy) (SIGIR ’16). Association for
Computing Machinery, New York, NY, USA, 335–344. doi:10.1145/2911451.2911534

[52] Diane Nahl. 2007. Social–biological information technology: An integrated conceptual framework. Journal of the American Society for
Information Science and Technology 58, 13 (2007), 2021–2046.

[53] René Riedl, Fred Davis, and Alan Hevner. 2014. Towards a NeuroIS Research Methodology: Intensifying the Discussion on Methods,
Tools, and Measurement. Journal of the Association for Information Systems 15, 10 (2014), 4. doi:10.17705/1jais.00377

[54] Stanisław Saganowski, Joanna Komoszyńska, Maciej Behnke, Bartosz Perz, Dominika Kunc, Bartłomiej Klich, Łukasz D Kaczmarek,
and Przemysław Kazienko. 2022. Emognition dataset: emotion recognition with self-reports, facial expressions, and physiology using
wearables. Scientific data 9, 1 (2022), 158.

[55] Philip Schmidt, Attila Reiss, Robert Dürichen, and Kristof Van Laerhoven. 2019. Wearable-Based Affect Recognition—A Review. Sensors
19, 19 (Jan. 2019), 4079. doi:10.3390/s19194079 Number: 19 Publisher: Multidisciplinary Digital Publishing Institute.

[56] Kshitij Sharma, Evangelos Niforatos, Michail Giannakos, and Vassilis Kostakos. 2020. Assessing Cognitive Performance Using Physio-
logical and Facial Features: Generalizing across Contexts. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 4, 3, Article 95 (Sept.
2020), 41 pages. doi:10.1145/3411811

[57] Md. Hedayetul Islam Shovon, D (Nanda) Nandagopal, Jia Tina Du, Ramasamy Vijayalakshmi, and Bernadine Cocks. 2015. Cognitive
Activity during Web Search. In Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information
Retrieval (Santiago, Chile) (SIGIR ’15). Association for Computing Machinery, New York, NY, USA, 967–970. doi:10.1145/2766462.2767784

[58] Winnie K. Y. So, Savio W. H. Wong, Joseph N. Mak, and Rosa H. M. Chan. 2017. An evaluation of mental workload with frontal EEG.
PLOS ONE 12, 4 (04 2017), 1–17. doi:10.1371/journal.pone.0174949

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 9, No. 3, Article 92. Publication date: September 2025.

https://doi.org/10.3758/s13428-020-01516-y
https://arxiv.org/abs/https://link.springer.com/content/pdf/10.3758/s13428-021-01759-3.pdf
https://doi.org/10.3758/s13428-021-01759-3
https://doi.org/10.1145/3477495.3531999
https://doi.org/10.2753/MIS0742-1222300403
https://doi.org/10.1145/3328908
https://doi.org/10.1145/2682862.2682874
https://www.jstor.org/stable/26848107
https://doi.org/10.1145/2484028.2484074
https://doi.org/10.1145/3178876.3186080
https://doi.org/10.1145/3308558.3313671
https://doi.org/10.1145/2911451.2911534
https://doi.org/10.17705/1jais.00377
https://doi.org/10.3390/s19194079
https://doi.org/10.1145/3411811
https://doi.org/10.1145/2766462.2767784
https://doi.org/10.1371/journal.pone.0174949


92:24 • Kaixin Ji et al.

[59] Luma Tabbaa, Ryan Searle, Saber Mirzaee Bafti, Md Moinul Hossain, Jittrapol Intarasisrisawat, Maxine Glancy, and Chee Siang Ang.
2022. VREED: Virtual Reality Emotion Recognition Dataset Using Eye Tracking & Physiological Measures. Proc. ACM Interact. Mob.
Wearable Ubiquitous Technol. 5, 4, Article 178 (Dec. 2022), 20 pages. doi:10.1145/3495002

[60] Pauline van der Wel and Henk Van Steenbergen. 2018. Pupil dilation as an index of effort in cognitive control tasks: A review. Psychon
Bull & Review 25 (2018), 2005–2015. doi:10.3758/s13423-018-1432-y

[61] Ryen W. White and Ryan Ma. 2017. Improving Search Engines via Large-Scale Physiological Sensing. In Proceedings of the 40th
International ACM SIGIR Conference on Research and Development in Information Retrieval (Shinjuku, Tokyo, Japan) (SIGIR ’17). Association
for Computing Machinery, New York, NY, USA, 881–884. doi:10.1145/3077136.3080669

[62] Yingying Wu, Yiqun Liu, Ning Su, Shaoping Ma, and Wenwu Ou. 2017. Predicting Online Shopping Search Satisfaction and User
Behaviors with Electrodermal Activity. In Proceedings of the 26th International Conference on World Wide Web Companion (Perth,
Australia) (WWW ’17 Companion). International World Wide Web Conferences Steering Committee, Republic and Canton of Geneva,
CHE, 855–856. doi:10.1145/3041021.3054226

[63] Ziyi Ye, Xiaohui Xie, Qingyao Ai, Yiqun Liu, Zhihong Wang, Weihang Su, and Min Zhang. 2024. Relevance Feedback with Brain Signals.
ACM Trans. Inf. Syst. 42, 4, Article 93 (feb 2024), 37 pages. doi:10.1145/3637874

[64] Ziyi Ye, Xiaohui Xie, Yiqun Liu, Zhihong Wang, Xuesong Chen, Min Zhang, and Shaoping Ma. 2022. Towards a Better Understanding
of Human Reading Comprehension with Brain Signals. In Proceedings of the ACM Web Conference 2022 (Virtual Event, Lyon, France)
(WWW ’22). Association for Computing Machinery, New York, NY, USA, 380–391. doi:10.1145/3485447.3511966

[65] Heeseung Yu and Eunkyoung Han. 2024. People see what they want to see: an EEG study. Cognitive Neurodynamics 18, 3 (2024),
1167–1181.

[66] Mahmoud Zeydabadinezhad, Jon Jowers, Derek Buhl, Brian Cabaniss, and BabakMahmoudi. 2024. A personalized earbud for non-invasive
long-term EEG monitoring. Journal of Neural Engineering 21, 2 (apr 2024), 026026. doi:10.1088/1741-2552/ad33af

[67] Baiqiao Zhang, Xiangxian Li, Yunfan Zhou, Juan Liu, Chao Zhou, Weiying Liu, and Yulong Bian. 2024. Are We in the Zone? Exploring the
Features and Method of Detecting Simultaneous Flow Experiences Based on EEG Signals. Proc. ACM Interact. Mob. Wearable Ubiquitous
Technol. 8, 4, Article 152 (Nov. 2024), 42 pages. doi:10.1145/3699774

[68] Shaorun Zhang, Zhiyu He, Ziyi Ye, Peijie Sun, Qingyao Ai, Min Zhang, and Yiqun Liu. 2024. EEG-SVRec: An EEG Dataset with
User Multidimensional Affective Engagement Labels in Short Video Recommendation. In Proceedings of the 47th International ACM
SIGIR Conference on Research and Development in Information Retrieval (Washington DC, USA) (SIGIR ’24). Association for Computing
Machinery, New York, NY, USA, 698–708. doi:10.1145/3626772.3657890

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 9, No. 3, Article 92. Publication date: September 2025.

https://doi.org/10.1145/3495002
https://doi.org/10.3758/s13423-018-1432-y
https://doi.org/10.1145/3077136.3080669
https://doi.org/10.1145/3041021.3054226
https://doi.org/10.1145/3637874
https://doi.org/10.1145/3485447.3511966
https://doi.org/10.1088/1741-2552/ad33af
https://doi.org/10.1145/3699774
https://doi.org/10.1145/3626772.3657890


SenseSeek Dataset: Multimodal Sensing to Study Information Seeking Behaviors • 92:25

A Additional Description of the SenseSeek dataset

Fig. 11. Examples of Gaze-annotated screen recordings.

Table 11. Demographic information & pre-study questionnaire per participant.

PID Age
(years old) Gender English Proficiency Level Right-handed Sleep

(hours)
Caffeine Intake

(cups, in the last two hours) Wear Glasses

PA5 18–24 Female Native English Y 7–9 N N
PA6 25–34 Male Native English Y <7 Y–1 N
PA8 18–24 Female Professional Work English Y <7 N Y
PA9 25–34 Female Professional Work English N 7–9 Y – 1 N
PA11 25–34 Male Professional Work English Y <7 N Y
PA12 25–34 Male Professional Work English N 7–9 N N
PA13 18–24 Male Full Professional English Y <7 Y – 1 N
PA17 18–24 Male Professional Work English Y 7–9 N Y
PA18 25–34 Female Professional Work English Y 7–9 Y ≥ 2 Y
PA19 25–34 Male Professional Work English Y 7–9 N N
PA20 25–34 Male Professional Work English Y <7 N N
PA21 25–34 Female Professional Work English Y 7–9 N Y
PA22 25–34 Male Professional Work English Y 7–9 N Y
PA27 25–34 Male Full Professional English Y 7–9 N Y
PA29 35–44 Male Professional Work English Y 7–9 N N
PA30 25–34 Male Full Professional English Y 7–9 N Y
PA31 25–34 Female Native English Y 7–9 N N
PA32 25–34 Male Native English Y 7–9 N N
PA33 25–34 Female Native English Y 7–9 N N

A.1 Details of Feature Extraction
EDA. A total of 31 EDA features were extracted, following Gao et al. [16], Barral et al. [5], and Boonprakong

et al. [8]. We extracted the 5 descriptive statistical features, including mean, minimum, maximum, standard
deviation, and range, from the mixed EDA values and their first and second derivatives, the Skin Conductance
Level (SCL) and the Skin Conductance Response (SCR). Apart from that, we also extracted more statistical features,
including median, variance, skewness, and kurtosis, from the mixed EDA values, median, and mean amplitude
for the SCL and SCR.

EEG. A total of 180 EEG features were extracted, following Gwizdka et al. [21] and Bird et al. [6]. We used the
eeglib library [11] for feature extraction.

For each of the 14 channels, we computed the mean, standard deviation, kurtosis, curve length, zero crossings,
number of peaks, and wavelet entropy, which are the common features in most EEG experiments [21, 30]. We
also calculated the powers of the 4 frequency bands for each of the 14 EEG channels [6], 𝑇ℎ𝑒𝑡𝑎 (4–8 Hz), 𝐴𝑙𝑝ℎ𝑎
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(8–13 Hz), 𝐵𝑒𝑡𝑎(13–25 Hz) and 𝐿𝑜𝑤𝐺𝑎𝑚𝑚𝑎 (25–40 Hz) bands. The powers were normalized by dividing by the
total powers.
Additionally, we derived features for left-right hemispheric asymmetry in each frequency band. Following

Gwizdka et al. [21], we divided the channels into four groups: frontal-left (AF3, F7, F3, FC5), frontal-right (FC6,
F4, F8, AF4), back-left (P7, O1), and back-right (P8, O2). Inter-hemispheric asymmetry was calculated by dividing
the mean power of right hemisphere groups (frontal-right and back-right) by the mean power of left hemisphere
groups (frontal-left and back-left). The intra-hemispheric asymmetry was calculated by dividing the mean power
of the frontal group by the mean power of the back group for each hemisphere.

PUPIL. A total of 25 PUPIL features extracted, following Gwizdka et al. [21]. We extracted the 5 descriptive
statistical features, including mean, minimum, maximum, standard deviation and range from pupil diameter,
Relative Pupil Dilation (RPD), and the first derivatives of RPD [21]. We also extracted the 5 quartiles (10𝑡ℎ, 25𝑡ℎ,
50𝑡ℎ, 75𝑡ℎ, 90𝑡ℎ) from the RPD and the 3 quartiles (25𝑡ℎ, 50𝑡ℎ, 75𝑡ℎ) from the first derivatives of RPD [21]. Apart
from that, the LHIPA index was also extracted. It is a frequency-based approach to measure cognitive load from
pupil diameter, purposed by Duchowski et al. [13].

MOTION. A total of 13 MOTION features were extracted from the wrist motion and head motion. The 5
descriptive statistical features of wrist motion were extracted using magnitude [16]. For head motion features, we
extracted the mean of the 𝑥,𝑦, 𝑧 coordinates on both angular speed and acceleration. Besides, we also extracted
the mean and energy from the magnitude of the acceleration.

GAZE. A total of 6 GAZE features were extracted, following Gwizdka et al. [21]. The GAZE features include
the number of occurrences, total and mean duration of each type of eye movement, i.e., fixation and saccade.
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B Additional Materials used in Data Collection

B.1 Preparation of the Topics & Backstories & Search Results
The topics and the corresponding backstories (i.e., task scenarios) are selected from the TREC2002-InformationNeed
dataset [46]. This dataset contains backstories corresponding to different topics from the TREC2002-4 topic set,
and categorizes them into three labels in terms of cognitive complexity. We use the topics from the Understanding
category, which requires the participants to find information and gain some understanding of the topics. After
removing the topics related to crises, wars, conspiracy, or politics, which might trigger subjective feelings, we
select 12 topics.
We use GPT-3.5 to slightly edit the backstories to ensure they all have similar word counts. As a result, the

backstories have an average of 40±1 words.
For each backstory, we manually select 2 – 3 articles from TREC document collections, which are relevant to

the information need. GPT-3.0 is used to generate the search result based on the provided articles and a binary
factual judgment question. The judgment question is to ensure the participants have engaged in the task. We
further manually examine the search results and check with the Flesch-Kincaid Grade readability level, and
edit with GPT-3.5 if it is too easy or too hard. All of them are converted into an audio format with the Google
text-to-speech API for the listening tasks.

Table 12. List of Topics and Backstories used. For the search results and more information, please find them in the dataset
file. *Text REtrieval Conference (TREC) Data: https://pages.nist.gov/trec-browser/

Topic
ID

TREC*
ID Topic Backstory (revised with GPT3.5) Backstory

word count
Backstory ID
(from [46]))

Search Result
word count

Search Result
(Flesch-Kincaid
Readability)

314 R03.314 Marine
Vegetation

You recently heard a commercial about the health benefits of eating algae, seaweed and kelp.
This made you interested in finding out about the positive uses of marine vegetation, both as
a source of food, and as a potentially useful drug.

41 IN14.002 143 12.6

320 R03.320 Undersea Fiber
Optic Cable

The FLAG (Fiber optic link around the globe) system will be the world’s longest undersea
fiber optic cable. You are interested in finding out more about the project, including which
companies are involved, and what technology is needed for such an endeavor.

42 IN14.164 146 10.5

353 R03.353 Antarctica
Exploration

On the T.V. news last night, you saw footage of scientists in Antarctica. There seemed a
surprising number of people there. This got you wondering what scientific expeditions or
projects are under way in Antarctica, and what is planned.

39 IN14.018 147 10.8

355 R03.355 Ocean Remote
Sensing

A friend at a university is excited about a chance to work with satellite data for ocean
remote sensing. You’ve become interested in this and you’d like to find out what’s
being developed in this field and how it’s being used.

41 IN14.102 148 11.5

416 R03.416 Three Gorges
Project

A friend is traveling to China and plans to cruise the Yangtze River. You’re not sure whether
that’s still possible, as it might now be dammed. You’d like to find out the current status of
the Three Gorges Dam project.

40 IN14.077 145 12.8

419 R03.419 Recycle,
Automobile Tires

You need to buy new tires for your car, and the local dealer has offered to take the old ones
for recycling. You didn’t know tires could be recycled and you wonder what new uses they
are being put to.

40 IN14.084 147 12.6

433 R03.433 Greek, Philosophy,
Stoicism

You visited a museum recently, and heard about the Greek philosophy of stoicism. You
start wondering if there is any contemporary interest in this philosophy, and whether
Greek stoic plays and artistic productions are taking place or being planned.

39 IN14.146 149 11

448 R03.448 Ship Losses
Your uncle works in shipping, recently expressed concern about bad weather and its risk.
You hadn’t realized the effect weather could have. You want to find some instances where
weather was the main contributing factor to losing a ship at sea.

41 IN14.035 152 12.3

708 T04.708 Decorative
Slate Sources

Your sister has just moved in to a new house, with slate stone flooring and a slate stone
counter top. You are now curious to explore the sources of slate stone for decorative use,
and how it is obtained.

39 IN14.033 150 12.6

743 T04.743 Freighter Ship
Registration

You are thinking of going into the shipping business, and decide that you want to learn
more about the regulations framework. Specifically, you aim to explore rules and
considerations related to the registration of a freight ship in a country.

40 IN14.110 146 13.4

711 T04.711 Train Station
Security Measures

There has been a great deal of publicity given to security at airports. But many people also
travel by train. You are interested in understanding what security measures have been
employed at train stations due to increased security concerns.

39 IN14.142 146 11.8

725 T04.725 Low White
Blood Cell Count

You’ve recently been to your doctor and learned you have a low white blood cell count, but
it’s not clear yet why this is. You want to find out what disease or condition might have
caused this symptom.

38 IN14.059 155 11.3
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Table 13. List of self-rating items.

Self-rating Item Text Values

Set 1
(on the Topic)

Topic Difficulty I am familiar with this topic. 1: Strongly disagree
2: Somewhat disagree
3: Neither agree nor disagree
4: Somewhat agree
5: Strongly agree

Topic Interest I am interested in this topic.
Topic Familiarity I feel difficult to understand this topic.

Set 2
(on the Search Result)

Information Relevance This information is relevant to my information need.
Information Difficulty I feel difficult to understand this information.

C Self-Rated Task Perceptions per Topic/Participant

Table 14. Average scores of self-ratings for 12 topics.

ID 314 320 353 355 416 419 433 448 708 743 711 725

Topic Marine
Vegeta-
tion

Undersea
Fiber
Optic
Cable

Antarctica
explo-
ration

Ocean
Remote
Sensing

Three
Gorges
Project

Recycle
Auto-
mobile
Tires

Greek Phi-
losophy
Stoicism

Ship
Losses

Decorative
Slate
Sources

Freighter
ship reg-
istration

Train Sta-
tion Secu-
rity Mea-
sures

Low
White
Blood
Cell
Count

topic_
difficulty 2.2 2.4 2.4 2.4 2.7 2.2 2.8 2.3 2.7 2.2 2.6 2.8

topic_
familiarity 2.7 3.6 3.1 3.0 1.7 3.1 2.8 2.7 1.5 3.2 3.0 2.0

topic_
interest

3.4 4.0 3.7 3.8 3.0 3.6 3.6 3.4 2.4 3.8 3.9 3.0

info_
difficulty 1.8 2.2 1.7 2.0 1.5 2.0 2.3 1.7 2.0 1.4 2.2 2.5

info_
relevance

3.4 4.2 4.2 4.2 3.7 4.3 3.4 4.2 3.8 4.6 4.4 3.2

attention_
check

100% 75% 100% 95% 90% 85% 55% 95% 75% 75% 70% 55%
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Table 15. Average scores of self-ratings for each participant.

PID topic_familiarity topic_interest topic_difficulty info_revelance info_difficulty attention_check

PA5 1.8 3.7 4.0 4.6 1.2 83%
PA6 2.8 3.8 1.2 4.1 1.2 100%
PA8 3.1 3.8 2.5 4.4 1.6 67%
PA9 3.2 3.2 2.0 4.6 1.5 83%
PA11 1.7 3.2 3.3 4.5 1.7 67%
PA12 3.6 3.4 2.4 3.4 2.4 75%
PA13 2.3 3.9 2.5 3.6 1.9 83%
PA17 2.6 3.6 2.8 3.8 3.3 92%
PA18 2.9 3.6 2.0 4.2 2.2 25%
PA19 3.4 4.0 1.8 4.3 1.5 83%
PA20 2.9 3.2 3.0 3.8 2.4 67%
PA21 1.3 1.7 3.2 3.7 2.4 67%
PA22 3.3 3.9 2.1 3.3 1.2 83%
PA26 1.7 1.8 4.2 3.9 3.2 83%
PA27 2.9 3.9 2.3 3.7 1.9 92%
PA29 2.8 4.0 2.2 3.8 2.1 100%
PA30 3.2 4.0 1.0 3.6 1.1 100%
PA31 2.2 3.3 2.4 4.5 1.8 92%
PA32 2.8 3.8 2.9 3.6 2.8 75%
PA33 2.9 3.1 2.2 4.2 1.7 100%
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