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ABSTRACT
Many questions of public interest do not have a single answer but
come with a set of choices, each of which with its pros and cons.
An “objective” information system can help explore the underlying
argument space, and, if equipped with a conversational interface,
it can create the experience of lively discussions resembling those
from our daily lives. However, users will (subconsciously) extend
the provided information by assumptions that adhere to their cogni-
tive biases. In this regard, note that biases do not arise only from the
underlying data or the employed algorithms, but also from the way
the information is presented—especially in audio-only channels.
Our paper brings attention to bias-related challenges of conversa-
tional interfaces for argument search systems. We identify research
questions that address these challenges, and we propose ideas and
methods to tackle them.

CCS CONCEPTS
•Human-centered computing→ Interaction paradigms; • In-
formation systems→ Users and interactive retrieval.
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1 INTRODUCTION
Conversational user interfaces of intelligent assistants, such as
Amazon Alexa, Google Assistant, and Apple Siri, have the poten-
tial to address complex information needs even for controversial
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Should we introduce a universal basic income?

That is a very controversial topic! I found nine reasons: five in favor and
four against a universal basic income. Which side should I start with?

I expected disagreement... Can you first give me the cons?

The main reasons against a universal basic income are that it,
first, erodes incentives for financial responsibility and hard work,
second, has negative effects on the national economy,
and third, has superior alternative policies.
Should I elaborate on one reason, list the remaining con, or list pros?

Figure 1: Start of a conversational argument search session
with a fictitious intelligent assistant (as imagined in prior
work [16]) on the topic of a universal basic income.

topics, but are at the moment mostly limited to answer with facts
expressed in a few words. However, intelligent assistants that an-
swer queries on controversial topics could be a solid asset to fight
misinformation, disinformation, and societal polarization by expos-
ing the background and reasoning behind different views [13, 18].
This scenario is called conversational argument search [16, 28].

Unfortunately, there is a large discrepancy between the amount
of information an intelligent assistant can convey and the explo-
ration a controversial topic demands. At first glance, the fictitious
dialog in Figure 1 seems to provide an adequate overview of the
topic discussed. However, as illustrated in Figure 2,1 the topic’s
structure is way more complex than suggested by the dialog.

Additionally, it is critical to understand that the way intelligent
assistants expose information has a significant impact on how users
perceive the information [5, 7]. Already the decision which view of
a controversial topic to present an argument for first has biasing
effects an assistant should compensate for. Otherwise, uncompen-
sated subconscious influences bear a high risk, as illustrated by a
proposal for an upcoming EU Regulation for Artificial Intelligence:
“The prohibitions covers practices that have a significant potential
to manipulate persons through subliminal techniques beyond their
consciousness [. . . ] in order to materially distort their behavior in a
manner that is likely to cause them or another person psychological
or physical harm” [11].
1Source: https://www.kialo.com/should-there-be-a-universal-basic-income-ubi-1634
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Figure 2: Kialo’s discussion topology for “Should There be
a Universal Basic Income (UBI)?” Each pro (green) and con
(red) is represented as a ring segment. Pros and cons of these
are on the next outer ring, and so on. Hovering over a seg-
ment shows the corresponding premise and its “impact,” as
voted by the Kialo community, in the form of one bar.

Motivation. As conversational and voice interfaces are becoming
more habitual, we assume that conversational argument search will
become an attractive feature of intelligent assistants [16]. Unfor-
tunately, our current understanding of conversational argument
search, as well as of providing complex answers via intelligent as-
sistants in general, is insufficient. However, we argue that if one
could design a conversational interface that makes the complexities
of the topics and of its decisions transparent to the user and that
compensates for the user’s cognitive biases, one could create an
effective tool to help users comprehend the complexities that many
of today’s questions of public interest have. To this end, this pa-
per aims to identify open challenges that the research community
needs to address to better understand how to design conversational
argument search systems, particularly to make them bias-aware.

2 BACKGROUND
The paper at hand discusses the implications of combining argu-
ment search [33] and conversational search [4] concerning biases
and—by extension—fairness, accountability, confidentiality, and
transparency (FACT) [20]. We argue that these issues cannot be
addressed through algorithm design and data collection alone, but
require a careful interface design, as well.

2.1 Conversational Argument Search
Conversational argument search systems provide their users with
arguments in favor of and against user-specified statements by
means of a conversation. The first argument search systems ap-
peared recently [31, 33], presenting both pros and cons instead of a
direct answer [22], but still resembling the classical search engine
interface. To provide for an interaction closer to human discussions,
related research suggests employing either voice search [16] or
avatars [35]. Even beyond, IBM’s Project Debater [27] is the first
system able to engage in a formal debate with humans. However,

whereas participants in a debate aim to convince their audience,
the users of an argument search system aim to inform themselves.2

A major challenge of conversational argument search systems is
summarizing the pros and cons for a quick overview [16] (recall Fig-
ure 2). One approach is to visualize the distribution of arguments ac-
cording to certain aspects, such as the argument’s topics [1]. Other
possible aspects could be the argument’s moral sentiment [17], the
facets examined in comparative arguments [26], or the types of
evidence given [23]. Other approaches include clustering and sum-
marizing the arguments by a handful of key points [6] and providing
an overview of an argumentative discourse via a structure-based
comparison [15]. How to embed such overviews into a conversation,
especially a voice-based one, has barely been investigated yet [16].

People searching for meaning [24] might be strongly attracted to
argument search, particularly to a conversational interface that al-
lows for vague questions, implying responsibility of the system for
fairness and transparency [2]. It is still unclear how to select argu-
ments for a fair treatment [20] of views, groups, and users. In many
cases, absolute fairness will be impossible, especially with a narrow
channel such as voice, but also due to biases in the data (e.g., social
biases [30]). Transparency [2] is essential in such a situation, that
is, the argument selection should be explained and gaps should be
indicated. However, research on how to increase the transparency
of conversational argument search systems is still lacking.

2.2 Bias in Conversational Information Access
Cognitive biases, which are systematic patterns that may make
users deviate from rational decision making, have been analyzed
at great length in psychology (cf. Kahneman [14]). Among these,
anchor bias refers to relying too strongly on the first piece of infor-
mation about a topic encountered. On the other hand, availability
bias refers to overestimating the importance of information that
comes to one’s mind more easily.3 Clearly, these and other biases
have implications on how to present arguments in a fair manner in
conversational interfaces.

Prior research on the effects of cognitive biases—negative as well
as positive ones—exists for both information access and conver-
sational systems, but little for systems at their intersection. For
information access, Azzopardi [5] provides an overview by survey-
ing different studies that analyzed cognitive biases across different
domains and search process steps. Different cognitive biases in-
fluence people’s information-seeking and retrieval behaviors in
decision-making processes. For instance, Novin and Meyers [19]
observed four cognitive biases of students researching controver-
sial science topics with a screen-based search engine: priming,
anchoring, framing, and availability. As exemplary research for
conversational systems, Santhanam et al. [25] observed anchor bias
in judgments for dialog systems evaluations.

Different paths exist for alleviating this issue, but these are barely
explored so far. Conceptually, Gerritse et al. [12] distinguish three
strategies for conversational systems to deal with biases they detect

2One reason for argument search could be to prepare for a debate, though.
3Given the cognitive load and memory load of listening to information in an audio
channel, the anchor bias effect may also be observed in the opposite direction: users
may get anchored to the latest information they listened to. Likewise, the effect of
availability bias may also be more prominent, as the higher cognitive load of listening
causes earlier pieces of information to be less prevalent in memory.
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Figure 3: Overview of the proposed research questions. Read
arrows as “How can the <entity 1> <verb> the <entity 2>?”

in the results or in a user’s questions: ignore, tell the user, or provide
options to counterweigh/diversify. In some cases, though, it may
be sufficient to change the presentation of results, for example, by
utilizing the intelligent assistants’ voice, speech style, and linguistic
attributes [9] or by modifying conversational style (e.g., high con-
sideration vs. high involvement [32]). The effect of such changes in
the presentation on the different cognitive biases is still unclear.

3 CHALLENGES AND OPPORTUNITIES
The challenges toward bias-aware conversational argument search
are related, on the one hand, to users and their cognitive bias, and,
on the other hand, to intelligent assistants and their argumentative
selection bias [30]. Figure 3 illustrates the different interactions
among these entities relevant to conversational user interfaces.
From these, we derive five main research questions along with a
(non-exhaustive) list of possible action steps listed in Table 1. We
detail the steps below, and we discuss the opportunities they entail.

RQ1. How can the user and the assistant understand each other?
Cooperative conversations require the conversants to establish a
common ground for the conversation, known as grounding [8], also
in argument search. One part of grounding for the assistant is either
to provide personalization options or to adapt automatically to each
user’s knowledge and beliefs. The other part for the assistant is to
detect and react to the user’s mental model of itself. For both parts,
novel experimental methodologies and a shift towards longitudinal
studies are needed to capture both short- and long-term effects
of users’ cognitive biases on their behavior. Approaches for all
mentioned issues likely require gathering personal data, making it
necessary to develop privacy-aware interaction guidelines [3].

RQ2. How can the assistant explain its argumentative selection
bias? Systems should be accountable for informing the user about
their different argumentative selection biases. This accountability
involves characterizing biases in a transparent and intelligible way.
For instance, the assistant could employ measures on media bias
from journalism and media communication [10, 29] to provide the
user with a sense of the political views covered—and missing—in
its response. Further investigation is also needed on how to com-
municate such measurements most effectively: up-front, with each
piece of information, as a summary, or yet in a different manner?

Table 1: Research questions (RQs) derived from the arrows
in Figure 3 alongwith proposed action steps to address them.

RQ Action Step

1. How can the user and the assistant understand each other?
- Investigate on short/long-term effects and mental models
- Develop privacy-aware interaction guidelines

2. How can the assistant explain its argumentative selection bias?
- Identify intuitively understandable bias categories
- Investigate how to make bias explicit

3. How can the user control the assistant’s argumentative selection bias?
- Identify cue phrases that specify argumentative selection biases
- Investigate on personas for different argumentative selection biases

4. How can the assistant compensate for the user’s cognitive biases?
- Investigate strategies to encourage users to explore
- Identify conversation styles that least provoke cognitive biases

5. How can the assistant help the user identify their cognitive biases?
- Identify hints at the application of cognitive biases
- Identify strategies to explain the users their cognitive biases

RQ3. How can the user control the assistant’s argumentative selec-
tion bias? Once users understand the argumentative selection bias,
the ability to control the bias would provide them with another
means for steering the conversation. But what are intuitive inter-
action methods for such control? One avenue for research are cue
phrases to ask for argumentative selection biases explicitly, such as
“what would a right-wing politician say?” Another one is to develop
different argumentative personas, such as the right-wing politician,
and to allow the user to choose whom to talk to. At its extreme,
this approach would allow for a conversation with several different
personas at once where the user would be the moderator.

RQ4. How can the assistant compensate for the user’s cognitive
biases? Conversely, the assistant needs to factor in the user’s cog-
nitive biases when providing arguments. For instance, one could
investigate how to compensate for biases that lead to premature
assumptions by encouraging users to explore the arguments both
more broadly (e.g., different views) and more deeply (e.g., counter-
arguments [34]). More subtle, conversational styles (e.g., whether
to barge in) and communication strategies likely affect cognitive
biases, though it is still unclear how and to what extent. Mea-
surements and experimental instrumentation from fields such as
cognitive science and social science may inform the design of cor-
responding experiments. In particular, such research is relevant for
the auditing of intelligent assistants in terms of not being detri-
mental in decision-making processes (cf. the regulation proposal
mentioned in Section 1).

RQ5. How can the assistant help the user identify their cognitive
biases? Another way to minimize the adverse effects of cognitive
biases is to help the user identifying them. Such help requires
the assistant to be able to detect the application of biases within
the conversation. Similarly to RQ2, the assistant needs to create
awareness of these biases in an intuitive and intelligible way. On a
positive note, users might be particularly open to being educated on
biases during argument search. Moreover, even generic reminders
could make users more attentive [21]. As with RQ1, longitudinal
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studies seem necessary to better understand the long-term effects
of such communication strategies.

4 CONCLUSION
In this thought-provoking paper, we have argued that more efforts
are needed for understanding how to design and develop effective
conversational argument search systems. In particular, more at-
tention needs to be paid to the implications that conversational
interfaces have in argumentative contexts. This is because (i) intel-
ligent assistants can barely retrieve information without a selection
bias and, (ii) they may create or reinforce undesirable cognitive
biases on the user’s side. We have identified relevant research ques-
tions and action steps to address current challenges in designing
bias-aware conversational argument search systems.

Many of the action steps that we propose will probably provide
insights beyond conversational argument search. Cognitive biases
will affect the reception of complex information via a narrow (audio-
only) communication channel in most scenarios. Audio, in turn,
may be the only channel available for certain individuals, such as
people from low-literacy communities or the visually impaired. For
example, howwould a conversation sound like in order to verify the
latest rumor about the efficacy of a COVID-19 vaccine effectively?
As for this and similar tasks, research on bias-aware conversational
argument search can shed light on critical recurring aspects of
conversational interfaces for information-seeking.
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