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Abstract

Automatically detecting online misinforma-
tion at scale is a challenging and interdisci-
plinary problem. Deciding what is to be con-
sidered truthful information is sometimes con-
troversial and difficult also for educated ex-
perts. As the scale of the problem increases,
human-in-the-loop approaches to truthfulness
that combine both the scalability of machine
learning (ML) and the accuracy of human con-
tributions have been considered.

In this work we look at the potential to au-
tomatically combine machine-based systems
with human-based systems. The former ex-
ploit supervised ML approaches; the latter in-
volve either crowd workers (i.e., human non-
experts) or human experts. Since both ML
and crowdsourcing approaches can produce
a score indicating the level of confidence on
their truthfulness judgments (either algorith-
mic or self-reported, respectively), we address
the question of whether it is feasible to make
use of such confidence scores to effectively
and efficiently combine three approaches: (i)
machine-based methods; (ii) crowd workers,
and (iii) human experts. The three approaches
differ significantly as they range from avail-
able, cheap, fast, scalable, but less accurate
to scarce, expensive, slow, not scalable, but
highly accurate.

1 Introduction

The challenge of identifying online misinforma-
tion has been rapidly growing given the increase
in popularity of online news consumption as well
as the ability to profile and micro-target social me-
dia users. Fighting the spread of online misinfor-
mation is a multi-disciplinary issue which requires
both technical advances to process large amounts
of false digital information as well as to under-
stand the societal context in which such spreads
happen. In order to best deal with the need to

both scale to large number of fact-checks and have
expert journalists manually checking and evaluat-
ing the veracity of posted information, human-in-
the-loop systems have been considered (Demartini
et al., 2020; Allen et al., 2021; Nakov et al., 2021).

Human-in-the-loop information systems aim at
leveraging the ability of machines to scale and
deal with very large amounts of data while re-
lying on human intelligence to perform very
complex tasks—for example, natural language
understanding—or to incorporate fairness and/or
explainability properties into the hybrid system
(Demartini et al., 2017). Example of success-
ful human-in-the-loop methods include ZenCrowd
(Demartini et al., 2012), CrowdQ (Demartini et al.,
2013), CrowdDB (Franklin et al., 2011), and
Crowdmap (Sarasua et al., 2012). Active learn-
ing methods (Settles, 2009) are another example
where labels are collected from humans, fed back
to a supervised learning model, and then used to
decide which data items humans should label next.
Related to this is the idea of interactive machine
learning (ML) (Amershi et al., 2014) where labels
are automatically obtained from user interaction
behaviors (Joachims and Radlinski, 2007).

While being more powerful than pure machine-
based methods, human-in-the-loop systems need
to deal with additional challenges to perform ef-
fectively and to produce valid results. One such
challenge is the possible noise in the labels pro-
vided by non-expert humans. Depending on which
human participants are providing labels, the level
of data quality may vary. For example, making
use of crowdsourcing to collect human labels from
people online either using paid micro-task plat-
forms like Amazon MTurk (Gadiraju et al., 2015)
or by means of alternative incentives like, e.g.,
‘games with a purpose’ (Von Ahn, 2006) is in gen-
eral different from relying on a few experts.

There is often a trade-off between the cost and



the quality of the collected labels. On the one
hand, it may be possible to collect few high-
quality curated labels that have been generated
by domain experts, while, on the other hand, it
may be possible to collect very large amounts of
human-generated labels that might not be 100%
accurate. Since the number of available experts
is usually limited, to obtain both high volume and
quality labels, the development of effective quality
control mechanisms for crowdsourcing is needed.
Crowdsourcing as a method to collect labels to
train veracity classification systems has recently
been investigated (Roitero et al., 2020a,b; Soprano
et al., 2021; Roitero et al., 2021).

Rather than seeing these data collection ap-
proaches as mutually exclusive, in this paper we
focus on the possibility of combining machine-
based truthfulness classifiers, non-expert annota-
tors, and experts. In particular, we focus on the
notion of confidence, i.e., the estimate of the relia-
bility of the prediction—given by either a machine
or a human annotator.

More in detail, in this paper we focus on the
following research questions:

• RQ1: Can algorithmic and self-reported hu-
man confidence scores be used to reliably es-
timate the quality of truthfulness decisions?

• RQ2: Do humans and machines make simi-
lar or different mistakes in classifying truth-
fulness?

• RQ3: Can scarce expert annotator resources
be integrated in such human-in-the-loop
systems to intervene in cases when both
crowd workers and machine-based truthful-
ness classifiers fail to correctly label an item?

To the best of our knowledge, this is the first at-
tempt to understand the relationship between the
effectiveness and confidence of the set including
machine-based methods, crowd workers, and ex-
perts in a truthfulness classification task.

The rest of the paper is organized as follows.
Section 2 discusses the related work. Section 3
details the methodology used in our study. We
report and analyze our results in Section 4. Sec-
tion 5 concludes by summarizing our findings and
describing future work.

2 Related Work

In this section we summarize approaches comput-
ing and making use of confidence scores generated

by ML models or human annotators (either self-
reported or implicit).

Different types of ML methods are able to pro-
duce not only a classification decision, but to also
attach a score that indicates how confident the al-
gorithm is about the made decision. This is pos-
sible for a diverse set of methods, from decision
trees to deep learning.

Poggi et al. (2017) consider a complete
overview of 76 state-of-the-art confidence mea-
sures for ML; Mandelbaum and Weinshall (2017)
discuss distance based confidence scores in the
case of neural network based classifiers; Guo et al.
(2017) detail a methodology to correctly interpret
and compute confidence scores from ML models.

Trusting classification decisions solely based on
algorithmic confidence may be risky. Once manu-
ally labelled data has been collected, trained mod-
els may reflect existing bias in the data. An ex-
ample of such a problem is that of ‘unknown un-
knowns’ (UUs) (Attenberg et al., 2015), that is,
data points for which a supervised model makes
a high-confidence classification decision, which is
however wrong. This means that the model is not
aware of making mistakes. UUs are often difficult
to identify because of the high-confidence of the
model in its classification decision and may create
critical issues in ML.

Quantifying decision confidence can also be
done when decisions are made by human anno-
tators. Hertwig (2012) discuss the role of con-
fidence in the “wisdom of the crowd” paradigm.
They point out how human confidence may be
influenced by social interaction and the presence
of others’ annotations. Joglekar et al. (2013) de-
scribes methods to generate confidence intervals
in order to capture crowd workers’ confidence and
bound accuracy scores. Jarrett et al. (2015) con-
sider workers’ self-assessment and investigates
whether workers confidence correlates with qual-
ity and observe that self-evaluation is not indica-
tive of their actual performance. This is consistent
with findings by Gadiraju et al. (2017). Related to
this observation, Li and Varshney (2017) show that
workers annotation performance does not increase
when considering the confidence scores to weight
their contribution. Song et al. (2018) consider
worker confidence in the setting of a labeling task
performed with active learning techniques. Difal-
lah et al. (2016) look at how to schedule labeling
tasks to optimize their execution efficiency.



More than just human self-reported confidence,
it is possible to implicitly measure confidence by,
for example, computing inter-assessor agreement
metrics. Nowak and Rüger (2010) study inter-
annotator agreement and show how annotation
quality can be improved when considering agree-
ment scores to aggregate labels. Aroyo and Welty
(2013) study the relationships between gold ques-
tions and workers agreement stating that agree-
ment metrics do not necessary correlate with qual-
ity but may uncover alternative views on possible
way to label data. Checco et al. (2017) discuss
agreement measures applied to crowdsourcing and
propose an alternative measure that is able to deal
with sparse and incomplete data. Maddalena et al.
(2017) incorporate assessor agreement into infor-
mation retrieval evaluation metrics. In our work
we make use of inter-annotator agreement metrics
as a measure of human annotator confidence and
quality.

3 Methodology

3.1 Dataset

We make use of manual truthfulness labels ob-
tained from a crowdsourcing experiment as pre-
sented by Soprano et al. (2021). The crowdsourc-
ing task was performed as follows. After an ini-
tial background survey phase, crowd workers are
presented with 11 political statements, one after
the other; 6 statements are taken from PolitiFact
(Wang, 2017), 3 from ABC,1 and 2 are used as
quality checks. For each statement, according to
the design defined by Roitero et al. (2020a), work-
ers are asked to provide a truthfulness label. Addi-
tionally to the design by Roitero et al. (2020a), we
ask workers to also provide a confidence score on
the expressed truthfulness label on a Likert scale
in the [−2, 2] range. The dataset contains a total
of 120 statements from PolitiFact: 10 for each of
the two political parties and for each level of the
six-level truthfulness scale used by the expert as-
sessors to evaluate the statements, and a total of 60
statements from ABC: 10 for each of the two po-
litical parties and for each level of the three-level
truthfulness scale used by the expert assessors to
evaluate the statements.

1https://apo.org.au/collection/302996/
rmit-abc-fact-check

3.2 Machine Learning for Truthfulness
Classification

BERT (Bidirectional Encoder Representations
from Transformers) (Vaswani et al., 2017) is a
language representation model based on perform-
ing a bidirectional training of a transformer based
model. The core part of the model is the en-
coder / decoder architecture (Devlin et al., 2019),
which is formed by different steps: the tokeniza-
tion and numericalization of the input sequence
followed by a set of embedding layers, which learn
during the training phase a multidimensional em-
bedding for each input token. Then, the learned
representation is enriched with the context infor-
mation represented with the positional encoding
of the tokens built using the Multi Head (Self)
Attention mechanism, which is fundamental to
learn a better language model. In the BERT ar-
chitecture multiple encoder / decoder blocks are
stacked together to form the model. This ar-
chitecture allows BERT to encode the entire in-
put sequence at once, and perform two training
task simultaneously: Masked Language Model
and Next Sentence Prediction. The truthfulness
classification task has been carried out using the
BERT model pre-trained for classification tasks
(bert-base-uncased2) fine-tuned with ex-
pert truthfulness labels on political statements. We
use the output of the last softmax layer as the ML
classification confidence score we use in our anal-
ysis.

GloVe (Global Vectors for Word Representa-
tion) by Pennington et al. (2014) is a word vector
learning technique which produces a vector space
model similar to word2vec. The fundamental idea
behind GloVe and word2vec is to learn, given a
large corpus, a set of tuples containing a word and
its context; then, the model is trained to predict the
context given the specific word. Unlike word2vec
which captures only the local context of a word,
GloVe considers also the global context, imple-
mented through a co-occurrence matrix. A feed-
forward architecture with two dense layers (6 and
1 node, respectively), and a soft-max layer at the
end. In Section 4 we only report results obtained
with BERT for space constraints but results ob-
tained with GloVe were similar.

2https://huggingface.co/
bert-base-uncased

https://apo.org.au/collection/302996/rmit-abc-fact-check
https://apo.org.au/collection/302996/rmit-abc-fact-check
https://huggingface.co/bert-base-uncased
https://huggingface.co/bert-base-uncased


3.3 Crowdsourcing for Truthfulness
Classification

With the crowdsourcing task design presented in
Section 3.1, we collect non-expert labels from
Amazon MTurk for 180 statements across dif-
ferent ground-truth truthfulness levels and differ-
ent sources. In order to compare against super-
vised binary ML classifiers, we binarize human
labels (originally collected on a 5-point [−2, 2]
Likert scale) by considering {−2,−1} as the
False Statements class and {1, 2} as the
True Statements class. We also binarize the
6-level Politifact scale and the 3-level ABC scale
expert labels.

We use both crowd labels aggregated by the sum
of the scores given by the 10 different workers
who judged the same statement, as well as using
the raw labels and confidence scores provided by
individual crowd workers. We remove both the 20
ABC labels with an in-between value and the 5
aggregated crowd labels with a 0 value, as they do
not indicate a binary classification decision. We
are then left with 159 statements which we use in
our analysis.

Thus, we generated a dataset that contains, for
a total of 159 statements, truthfulness labels pro-
duced by ML models, non-expert crowd workers,
and experts (i.e., ground truth labels) together with
the respective confidence scores (experts are as-
sumed to have max confidence).

3.4 ML and Crowd Confidence

To compute the crowd and machine learning con-
fidence, we proceed as follows. For crowdsourced
labels, we consider both the confidence scores
self-reported by individual crowd workers, as well
as the standard deviation among the ten crowd la-
bels collected for each document. We refer these
two scores respectively as explicit and implicit
confidence scores.

Concerning the machine learning approaches,
we cannot directly use the scores returned by the
model in their last soft-max layer. Such scores
can not be treated as confidence scores as shown
in previous studies (Guo et al., 2017). Thus, to
compute the machine learning confidence scores,
we employed the bootstrap technique (Efron and
Tibshirani, 1985): starting from a specific ma-
chine learning model, we produced ten different
variations of such model obtained by varying the
random seeds used in the initialization procedure;

then, we run the ten models on the dataset and,
similarly to what we do for crowdsourced labels,
we compute the standard deviation over the ten
scores collected for each document.

4 Results

4.1 ML and Crowd Accuracy

First we report on the truthfulness classification
accuracy of both ML and crowd-based methods to
label the truthfulness of statements in the dataset.
As compared to expert ground-truth labels, ML
models and crowd workers (with truthfulness la-
bels for a statement aggregated by means of sum
as raw labels are in [−2, 2]) perform at a similar
level of accuracy (GloVe: 64.5%; BERT: 63.52%;
word2vec: 62.9%; crowd: 55.3%). Thus, in the
following we only report the results obtained on
the most effective ML model.

Next, we explore the opportunity of combin-
ing these approaches for truthfulness classification
by leveraging confidence-based combinations as
well as involving scarce expert annotator resources
when most beneficial.

4.2 ML and Crowd Confidence

Figure 1 shows both the ML (i.e., GloVe) and
crowd confidence for the non-aggregated labels
with a breakdown on the correctly and not cor-
rectly classified statements. Note that the ML and
crowd confidence scores are shown in two sepa-
rate plots since they are on two separate and not
comparable scales: ML confidence scores are ob-
tained from the bootstrap techniques applied to the
soft-max layer of the ML algorithm which returns
values in the [0.5, 1] range, while the crowd confi-
dence score is self-reported by each crowd worker
on a [-2,2] scale. As we can see from Figure 1,
ML confidence scores are almost always slightly
lower on average for statements in which ML de-
cisions are wrong and higher when ML correctly
classify them (i.e., easy statements), even if such
differences are small and not statistically signif-
icant. We see that crowd confidence shows the
same behavior. Thus, answering RQ1, it seems
raw confidence scores may be a weak signal indi-
cating accurate classification decisions, thus lead-
ing to risks of undetectable classification errors
(i.e., unknown unknowns) especially for the case
of non-expert human annotators.

We now look at the confidence scores for the
aggregated crowd labels; these confidence scores



Figure 1: ML and explicit crowd confidence scores for raw crowd labels over correct and incorrect truthfulness
classifications.

Figure 2: ML (left) and crowd confidence; both explicit (center plot) and implicit (right plot) for aggregated labels
over ground-truth classes.

are obtained by taking the average value for each
statement over all the workers who assessed it.
Figure 2 shows, similarly to Figure 1 but with a
breakdown on statement truthfulness rather than
the correctness of its classification, the confidence
for both ML and crowd truthfulness classification
decisions.

As we can see from the plots, the mean con-
fidence score for the ‘true’ statements is higher
(although not significantly different according to a
Mann-Whitney test) than the confidence score on
the ‘false’ statements for confidence scores; on the
contrary, for ML confidence scores the aggregated
confidence scores are slightly higher (although not
significantly different either) for the ‘false’ state-
ments. This indicates that, similarly to what was
observed for Figure 1, it seems that aggregated
confidence scores are a weak signal indicating ac-
curate classification decisions, and it should not be
used as it may lead to undetectable classification
errors.

We now move to study the relationship between
ML and aggregated crowd confidence scores, to
see if they are correlated and if one confidence

score can act as a proxy for the other. Figure 3
shows on the x-axis the aggregated crowd confi-
dence scores, on the y-axis the ML confidence;
each dot is a statement; the different colors in the
plot highlight a breakdown on either correctly and
incorrectly classified statements by both the ML
and the crowd. As we can see by inspecting the
plots as a whole, both implicit and explicit crowd
confidence show the same behavior when com-
pared to ML confidence. Moreover, as we can see
from inspecting the plots individually, the confi-
dence scores for the statements correctly classified
by both human and machine methods are spread
across the plot; this is a further confirmation that
trusting both ML and crowd confidence scores can
lead to classification errors. If we now focus on
the top-right and bottom-left part of the plots, we
see that it contains dots of different colors; this in-
dicates that even when both methods have either
a high (top-right) or low (bottom-left) confidence
scores the accuracy is similar. Again, this is a fur-
ther confirmation of phenomena observed so far
which indicates that both ML and crowd confi-
dence scores should not be trusted.



Figure 3: ML versus explicit (left plot) and implicit (right plot) crowd confidence with a breakdown on classifica-
tion errors.

Summarizing the results observed so far, we
can conclude that both ML and crowd confi-
dence scores should be inspected carefully and
not blindly trusted, as they can lead to classifi-
cation errors. Furthermore, we observed a pecu-
liar but interesting behavior for crowd confidence
scores; both explicit (i.e., the scores submitted by
the workers) and implicit (i.e., the ones automat-
ically derived by considering the standard devi-
ation of the truthfulness labels as submitted by
the workers) confidence scores show a very sim-
ilar behavior when compared to ML confidence
scores; thus, this set of preliminary results hints
that implicit confidence scores can act as a proxy
for explicit scores if the aim is to compare them
with ML scores. Thus, researchers and practition-
ers can avoid asking for explicit confidence scores
if their focus is on accuracy and comparison with
ML confidence scores, reducing the effort required
by the crowd workers when performing the task.

To verify if this conjecture holds in general,
we compared the explicit and implicit crowd con-
fidence scores. Similarly to Figure 3, Figure 4
shows on the x-axis the aggregated crowd implicit
confidence scores, and on the y-axis the aggre-
gated crowd explicit confidence scores; each dot
is a statement; the different colors in the plot high-
light a breakdown on either correctly and incor-
rectly classified statements. As we can see from
the plot, while implicit and explicit crowd confi-
dence scores show a very similar behavior when
compared to ML confidence (see Figure 3), we
can see that the two measures are not correlated,

Figure 4: explicit versus implicit crowd confidence
with a breakdown on classification errors.

and each statement shows a different implicit and
explicit scores. Thus, if the focus of research and
practitioners is purely on crowd confidence scores,
implicit and explicit ones are substantially differ-
ent. In the following we will focus on the rela-
tionship between effectiveness and confidence of
the models, to investigate which crowd confidence
scores provide a more informative signal when re-
lated to effectiveness.

We now turn to investigate whether the confi-
dence and effectiveness of the methods used to
predict the truthfulness of the statements are re-
lated. To this aim, we break down the confidence
scores into quartiles and for each quartile we plot
the accuracy of the considered method. Figure 5



Figure 5: Confidence versus accuracy: group state-
ments by quartiles of confidence scores and plot 4
points; both for ML and crowd.

shows the results, by displaying in the x-axis the
confidence quartile, and in the y-axis the corre-
sponding accuracy score; each series represent ei-
ther the ML or crowd effectiveness scores. As we
can see from the plot, there is no apparent clear
pattern for all the series, even though it appears
that the ML effectiveness scores overall observe a
slight increase as the confidence scores itself in-
creases, while the crowd scores, and in particu-
lar the implicit ones, observe a slight accuracy de-
crease while confidence increases.

Answering RQ2, we can see from the plots in
Figure 3 and focusing on the yellow and blue state-
ments, that there are many statements for which
one of the two methods (i.e., ML or crowd) results
in correct classification decisions, but the other
method does not. Furthermore, Figure 5 shows
that there is no clear signal that an increase in con-
fidence is related to an increase in accuracy scores,
for both ML or crowd.

While this negative results hint that it appears
challenging to make use of confidence scores to in-
crease the effectiveness of such methods and iden-
tify the cases where one of the two methods (i.e.,
ML or crowd) results in correct classification deci-
sions but the other method does not, this set of re-
sults suggests the opportunity to investigate those
signals in order to build an effective human-in-the-
loop system which combines non-expert human
and machine truthfulness classification together to
obtain better quality decisions. We will discuss
such approach in the following.

4.3 Can Confidence Be Leveraged?
Having studied the signal provided by both the ML
and crowd confidence scores, we now investigate

if such signals can be leveraged to improve the
classification accuracy and the label quality when
assessing the truthfulness of statements.

To this aim, and to answer RQ3 about the po-
tential involvement of experts, we perform the
experiment as detailed in the following. Start-
ing from the original dataset, for both ML and
crowd, we replace the labels (i.e., the classifica-
tion decisions for statements) that have the lower
confidence scores with their corresponding ground
truth label (i.e., the label as provided by the ex-
perts, which we assume to be always correct).
Then, we re-compute the effectiveness of either
the ML or crowd approach, measured by accuracy.
To ensure a fair comparison, we also report the ef-
fectiveness of two baselines to compare against:
the replacement with the ground truth label for a
random statement in the dataset (repeated 50 times
to remove random fluctuations of the series), and
the replacement of the statements according to an
oracle, which always replaces the statement that
lead to obtain the highest increase in effectiveness.
While the former baseline represents the average
random case, the latter represents the optimal re-
placement selection strategy.

Figure 6 shows in the x-axis the number of
statements which have been replaced in the orig-
inal dataset, and in the y-axis either the ML or
crowd accuracy scores; the three series represent
the oracle, the random choice, and our strategy
based on replacing the statements according to
their confidence scores, replacing the ones with
lower confidence first. As we can see focusing on
the plot on the left side of Figure 6, the ML effec-
tiveness increases as the replacements are done by
removing the statements with lower confidence;
we can also see that such strategy is always on
average as effective as the random selection strat-
egy, or even worse for same data points; both se-
ries are far less effective than the oracle. This re-
sults suggests that ML confidence can not act as
a proxy for effectiveness, and thus it can not be
leveraged (at least not in a naive way) to increase
the model accuracy. This is not a definitive re-
sult and it suggest that there is room for improve-
ment and it can be seen as an opportunity to study
and develop novel methods to leverage confidence
scores with the aim of identifying mis-classified
statements and improving the overall model effec-
tiveness. We leave for future work the analysis
of more sophisticated approaches based on confi-



Figure 6: ML (left) and crowd (explicit, center; implicit, right) accuracy after replacing their labels with expert
labels for statements (i) selected by an oracle (maximizing accuracy on each replacement), (ii) with lowest confi-
dence, or (iii) uniformly at random.

dence or other signals. As we can see from the
plot on the center of Figure 6, the same phenom-
ena can be observed for crowd aggregated scores
when explicit confidence scores are used. On the
contrary, the situation changes when implicit con-
fidence scores are used, as it can bee seen by in-
specting the plot on the right side of Figure 6; such
plot shows that, as the number of replacements
grows, the accuracy of the methods grows and
slightly over-performs the random replacement of
statements. This is a positive result as it suggests
that implicit confidence signals from crowd work-
ers can be leveraged to increase the effectiveness
of such method when employed to classify misin-
formation statements. These results are consistent
with our previous observation on the lack of signal
in ML confidence scores and that of previous work
(Gadiraju et al., 2017; Li and Varshney, 2017) in-
dicating that self-reported reliability is not accu-
rate in crowdsourcing (i.e., highly confident crowd
workers often make mistakes).

5 Conclusions and Future Work

In this paper we studied how ML and non-expert
crowd workers classify the truthfulness of state-
ments. To the best of our knowledge, this is
the first attempt to study a human-in-the-loop
pipeline for truthfulness classification which in-
volves machines, non-experts (crowd workers),
and experts (fact-checkers). In particular, we fo-
cused on both accuracy and confidence of the dif-
ferent approaches. We looked at both the accuracy
and confidence signals alone, and we also stud-
ied their combination and their correlation; finally,
we looked at identifying potential ways to lever-
age such signals and to combine them in order to
improve the effectiveness of the classification de-

cision process.

Our results show that, while ML and crowd
confidence scores are not related to effectiveness,
they can be leveraged to increase the effective-
ness of the misinformation system. In this re-
spect, implicit crowd confidence is a better indi-
cator of effectiveness than crowd workers’ self-
reported confidence. We have also observed that
ML and non-expert crowd workers make differ-
ent mistakes, and their predictions do not agree
in general. This result opens up to the opportu-
nity of identifying more effective ways to com-
bine these two approaches to increase the effec-
tiveness of misinformation detection systems. Fi-
nally, we have shown that crowd workers and in
particular their confidence scores can be leveraged
to increase the effectiveness of systems when ex-
perts fact-checkers are brought into the loop in the
cases where automatic ML or non-expert crowd
workers are not confident on the submitted labels.

While our preliminary results are promising,
there is still large room for improvement in mak-
ing the most out of limited expert annotator re-
sources; we believe this work is a first step to-
wards the identification of signals for building an
effective human-in-the-loop pipeline for misinfor-
mation assessment.
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