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Abstract
Knowledge graphs (KGs) are becoming essential resources for many downstream 
applications. However, their incompleteness may limit their potential. Thus, 
continuous curation is needed to mitigate this problem. One of the strategies to 
address this problem is KG alignment, i.e., forming a more complete KG by merging 
two or more KGs. This paper proposes i-Align, an interpretable KG alignment 
model. Unlike the existing KG alignment models, i-Align provides an explanation 
for each alignment prediction while maintaining high alignment performance. 
Experts can use the explanation to check the correctness of the alignment prediction. 
Thus, the high quality of a KG can be maintained during the curation process (e.g., 
the merging process of two KGs). To this end, a novel Transformer-based Graph 
Encoder (Trans-GE) is proposed as a key component of i-Align for aggregating 
information from entities’ neighbors (structures). Trans-GE uses Edge-gated 
Attention that combines the adjacency matrix and the self-attention matrix to learn 
a gating mechanism to control the information aggregation from the neighboring 
entities. It also uses historical embeddings, allowing Trans-GE to be trained over 
mini-batches, or smaller sub-graphs, to address the scalability issue when encoding 
a large KG. Another component of i-Align is a Transformer encoder for aggregating 
entities’ attributes. This way, i-Align can generate explanations in the form of a set 
of the most influential attributes/neighbors based on attention weights. Extensive 
experiments are conducted to show the power of i-Align. The experiments include 
several aspects, such as the model’s effectiveness for aligning KGs, the quality of 
the generated explanations, and its practicality for aligning large KGs. The results 
show the effectiveness of i-Align in these aspects.
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1 Introduction

Knowledge graphs (KGs) are getting more attention in the research community 
and industry. They are shown to effectively improve the performance of many 
downstream applications, such as question answering (Berant et al. 2013; Fader 
et  al. 2014), recommender systems (Zhang et  al. 2016; Zhao et  al. 2017), and 
information retrieval (Ensan and Bagheri 2017; Liu and Fang 2015; Reinanda 
et  al. 2020). Despite their usefulness, KGs are notoriously incomplete (Wang 
et al. 2017), and hence they require continuous curation and enrichment.

One of the most effective KG enrichment techniques is KG alignment 
(Paulheim 2017), which aims to merge two or more KGs to form a single and 
more complete KG. The first step of KG alignment is finding entities representing 
the same real-world entity in different KGs. Then, the relationships (i.e., the 
attributes and the neighbors) of the aligned entities from the different KGs are 
merged to form a more comprehensive KG. The former step becomes the main 
challenge of a KG alignment technique, while the latter is straightforward.

Traditional approaches of KG alignment mainly use string matching of entities’ 
attributes to compute entity similarity (Volz et  al. 2009; Pershina et  al. 2015). 
These approaches require manually defined constraints, i.e., they need to know 
which attributes are to be compared beforehand. However, the manually defined 
constraints are typically sub-optimal since different entities may have different 
attributes, e.g., a person may have a gender attribute, but an organisation does 
not.

The state-of-the-art KG alignment approach is based on entity embeddings 
(Trisedya et  al. 2019; Wu et  al. 2020; Liu et  al. 2020). To compute the entity 
similarity, it first computes the embeddings (a vector representation) of all 
entities in the KGs. Then, a vector similarity (e.g., cosine similarity) can be used 
as the entity similarity score. Despite its success, the practical use of embedding-
based KG alignment techniques for KG enrichment is low. One of the key reasons 
is that these techniques do not provide any explanations of the alignment results, 
which is essential to help experts decide whether the alignment is correct. The 
expert check is important to maintain the quality of the resulting KG. Without 
any explanation of the prediction, an expert needs to look up all the attributes and 
neighbors of the aligned entities predicted by the model to verify the prediction. 
This can be error-prone since different KGs often have different naming schemes 
for attributes and relations (e.g., educated_at vs. alumni).

This paper aims to fill this gap by proposing an interpretable embedding-
based KG alignment model capable of generating state-of-the-art performance 
with explainable alignment results. There are three main challenges to build 
such a model. The first is the interpretability of the two common approaches for 
embedding-based KG alignment techniques, Translation-based and Graph Neural 
Network (GNN)-based KG alignment models, is non-trivial. The translation-
based alignment models compute entity embeddings using a translation-based 
embedding model, such as TransE (Bordes et al. 2013), that treats the triples in 
a KG independently, making it difficult to compute the importance of attributes 
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and neighbors. Meanwhile, GNN-based models (Wu et al. 2020; Liu et al. 2020) 
overlook entities’ attributes by typically only using the entity label to initialize 
node embeddings in the GNN while ignoring the other attributes (e.g., birth date, 
address, etc.). Moreover, GNN typically employs a message-passing paradigm, 
where the aggregation function is constructed to be invariant to neighborhood 
permutations (Dwivedi and Bresson 2021). These limitations mean that the 
predicted alignments are difficult to explain, i.e., it is difficult to compute the 
importance of the attributes and neighbors of the aligned entities.

The second challenge is that applying a post-hoc (model-agnostic) explainer 
is sub-optimal. One of the state-of-the-art post-hoc explainers for GNN models 
is GNNExplainer (Ying et  al. 2019). However, it can only extract the most 
influential neighbors, but not the most influential attributes, due to the first 
limitation of GNN-based models mentioned above. Moreover, model-agnostic 
explainers cannot have perfect fidelity with respect to the model (Rudin 2019). 
The third challenge is scalability. The state-of-the-art alignment models are built 
on top of GNN models that need to maintain the whole KB graph, which requires 
large amounts of memory for the message-passing procedure. This is problematic 
when handling large KGs.

This paper proposes an interpretable KG alignment model named i-Align to 
handle the above challenges. The main goal of i-Align is to accurately predict entity 
alignment between KGs and seamlessly provide an explanation for the prediction. 
The provided explanation is in the form of the similarity between the top-n features 
(i.e., attributes and neighbors) of the aligned entities used to compute the entity 
embeddings. Intuitively, a KG alignment model should capture the aligned features 
of aligned entities, which are reflected by the computed embeddings. In other words, 
entity embedding is computed by highlighting the features that are aligned with 
the features of the counterpart entity. Hence, the top-n highlighted attributes and 
neighbors of entities can help to indicate the correctness of the predictions.

The proposed model is built on top of a Transformer model (Vaswani et al. 2017) 
to exploit its self-attention mechanism to rank the importance of the attributes 
and neighbors (Wiegreffe and Pinter 2019) as the model’s explanation. It has two 
Transformer encoders, one is used as an attribute aggregator, and the other is used as 
a neighbor aggregator. The attribute aggregator computes a hidden state of an entity 
based on its attribute using the standard Transformer (Vaswani et al. 2017). At the 
same time, the neighbor aggregator computes a hidden state based on its structure/
neighbors. Both hidden states are combined to form entity embeddings.

This, however, poses an additional challenge. Computing the hidden states (latent 
information) based on structure/neighbors using a Transformer-based model is chal-
lenging, especially in large KGs, which leads to the following sub-problems. First, 
the self-attention mechanism of a Transformer is computationally expensive and may 
not be feasible to be applied to a large graph. Thus, the model needs to decompose 
the large graph into sub-graphs (mini-batches). Second, it requires a message-pass-
ing-like mechanism to aggregate the structural information of both the sub-graphs 
and the whole graph accordingly. Existing work, such as GraphTransformer (Dwivedi 
and Bresson 2021), has attempted to simulate the message-passing mechanism of a 
GNN in a Transformer-based model, but it cannot handle large graphs.
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To address the above challenges, a novel Transformer-based Graph Encoder, 
Trans-GE, is proposed for the neighbor aggregator component of i-Align. Trans-GE 
uses Edge-gated Attention that combines the adjacency matrix and the self-atten-
tion matrix to learn a gating mechanism to control the information aggregation from 
neighboring entities. It also uses Historical Embeddings (Chen et al. 2018; Fey et al. 
2021), which allows Trans-GE to approximate the full computational graph in a 
mini-batch to address the scalability issue when encoding a large KG. The attention 
mechanism of the attributes and neighbor aggregators is used to compute the atten-
tion weight to highlight the important attributes and neighbors, respectively. The 
top-n highlighted attributes and neighbors of the aligned entities are then listed as an 
explanation of whether the alignment is correct.

In summary, the contributions of the paper are as follows: 

1. An interpretable KG alignment model is proposed, where an explanation of the 
alignment prediction can be automatically derived. The alignment prediction can 
help enrich a KG, and the explanation can help experts check the correctness of 
the prediction to maintain the high quality results of the enrichment process.

2. Along with the proposed model, a novel Transformer-based graph encoder is 
proposed. It uses Edge-gated Attention to learn a weight that controls information 
aggregation from the surrounding neighbors of an entity. It also uses Historical 
Embeddings to train the model over small mini-batches.

3. Extensive experiments and analyses are conducted to show the model’s 
effectiveness in predicting the alignments and providing explanations.

2  Related work

In this section, first, two approaches of embedding-based KG alignment models are 
discussed, including translation-based and GNN-based models. Then, explanation 
techniques for GNN models are also discussed.

2.1  Embedding‑based KG alignment

Embedding-based KG alignment models have become popular since the success of 
knowledge representation learning (Wang et al. 2017). Two common approaches of 
embedding-based KG alignment are translation-based and GNN-based models. Gen-
erally, the embedding-based KG alignment models consist of two modules. The first 
is the embedding module that computes the embeddings of entities and predicates 
of two KGs. The second is the alignment module that learns an alignment matrix to 
transform entity embeddings from one KG vector space to the other KG vector space 
so that the entity embeddings from the two KGs fall in the same vector space. The 
alignment module is trained using a seed set of aligned entities (seed alignment for 
short). The fundamental difference between the two is how the entity embedding is 
computed. Translation-based models use a translation-based KG embedding model, 
such as TransE (Bordes et al. 2013). In contrast, GNN-based models use a Graph 
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Neural Network encoder, such as Graph Convolutional Networks (GCN) (Kipf and 
Welling 2017).

Translation-based models MtransE (Chen et  al. 2017) is the first effort on 
embedding-based KG alignment. It uses TransE in its embedding module and 
shallow networks to learn an alignment matrix. IPTransE (Zhu et  al. 2017) uses 
an extension of TransE called PTransE, which advances TransE by considering 
a path between two entities in a KG triple. Another representative KG alignment 
is BootEA (Sun et  al. 2018), which iteratively adds the seed alignment from the 
highly-confident predicted alignments in the previous training iteration. The 
alignment module of BootEA is a one-to-one classifier instead of a transformation 
matrix used by the predecessors. TransEdge (Sun et al. 2019) aims to improve the 
embedding module by considering the contextual information when computing the 
predicate embeddings. When processing a KG triple, it uses a function to combine 
the predicate embeddings with the head and tail embeddings.

The above models only consider the KG structures (entity’s neighbors) and ignore 
the attributes. The subsequent development of embedding-based KG alignment 
models shows that exploiting the attributes improves the model’s performance 
significantly. JAPE (Sun et al. 2017) is the first to study the integration of attribute 
information for KG alignment. It treats the attribute as an attribute triple, which 
contains an entity, a relationship/predicate, and an attribute, similar to the typical 
KG triple. Hence, the TransE embedding models can be directly applied in its 
embedding module. Further development advances JAPE by using a more robust 
attribute encoder. For example, AttrE (Trisedya et al. 2019) uses LSTM and N-gram 
embeddings to encode the attribute values, while MultiKE (Zhang et al. 2019) uses 
Convolution Neural Networks (LeCun et al. 2015). The other work uses additional 
textual information to improve the embedding module. For example, KDCoE (Chen 
et al. 2018) uses entity description.

GNN-based models GCN-Align (Wang et al. 2018) is the first method that uses 
Graph Convolutional Networks (GCN) as an embedding module. The reason is that 
GCN can better capture the structural information in a graph (e.g., a KG). HGCN 
(Wu et  al. 2019) improves GCN-Align by explicitly adding predicate embeddings 
as additional features. MuGNN (Cao et al. 2019) further improves GCN-Align by 
inferring the missing relationships/predicates using the Horn rules. GMNN (Xu 
et al. 2019) treats KG alignment as graph matching and uses node-level and graph-
level matching modules. The node-level matching is similar to the embedding 
module of the predecessors, while the graph-level matching uses another GCN to 
encode topic graphs contained in a KG. NMN (Wu et al. 2020) uses neighborhood 
differences as additional features. They propose a sampling strategy to select the 
most representative/informative neighbors to get the neighborhood difference.

The above-mentioned models use GCN in their embedding module. Some mod-
els use the variants of GCN, such as KECG (Li et  al. 2019) uses Graph Attention 
Networks (GAT) (Velickovic et  al. 2018). AVR-GCN (Ye et  al. 2019) proposes 
vectorized relational GCN. SSP (Nie et al. 2021) combines TransE and GCN as its 
embedding module. The other work along this line uses various information as addi-
tional features. For example, AliNET (Sun et al. 2020) considers the neighbor dis-
tance, MRAEA (Mao et al. 2020) includes meta-relation, such as relation direction 
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and inverse relation, and AttrGNN (Liu et al. 2020) splits the attributes into different 
views, including attribute label, attribute literal values, and attribute digital values.

In general, the explanation of the predicted alignment from GNN-based models is 
difficult to obtain. The reason is that the GNN used in these models employs a mes-
sage-passing paradigm, where the aggregation function is constructed to be invari-
ant to neighborhood permutations (Dwivedi and Bresson 2021). Thus, it is difficult 
to quantify the importance of the neighbors for computing the entity embeddings. 
Moreover, GNN-based models overlook entities’ attributes. Typically, they only 
use the entity label to initialize node embeddings in the GNN and ignore the other 
attributes. This makes it difficult to measure the importance of the attributes. One 
alternative to getting an explanation of GNN-based models is by applying a post-hoc 
explainer, which is discussed in the following section.

2.2  Explanation techniques for GNN

A post-hoc explainer treats a machine learning model (e.g., a GNN model) as 
a black box. It approximates the behavior of a model by extracting relevant 
information to reveal the attribution of the input features. There are two common 
approaches for post-hoc explainers: model agnostic and model specific. The main 
difference is that the model agnostic explainers do not consider the model’s internal 
components, e.g., the learned weights. Typically, they make a black box model 
more transparent by creating an approximation around the prediction using a linear 
(but local) classifier (Ribeiro et  al. 2016), feature attribution (Lundberg and Lee 
2017), saliency mappings (Bach et al. 2015; Lapuschkin et al. 2019), or rule-based 
explanations (Bastani et al. 2017). Model agnostic approaches provide flexibility in 
model architecture and explanation type (e.g., linear formula or feature importance). 
However, they may only provide local explanations and require high computation 
when permuting the input features. This is problematic when dealing with large KGs 
that can have a huge number of entities and attributes. On the other hand, model 
specific explainers consider the model’s internal components and mostly focus on 
deep neural network models. The most commonly used components are gradients 
(Liu and Gifford 2017; Selvaraju et al. 2017), attentions (Kumar et al. 2017), and 
neuron contributions (Chen et al. 2018; Shrikumar et al. 2017; Sundararajan et al. 
2017). The limitation of this approach is that it binds to one type of model.

The methods mentioned above are designed for non-GNN models. Adapting 
these methods for explaining a GNN model is non-trivial, as recent studies show that 
these methods are prone to gradient saturation problems, especially when computing 
the gradient of a large adjacency matrix (Ying et al. 2019).

There is limited work on the post-hoc (model agnostic) explanation method of GNN 
models. GNNExplainer (Ying et al. 2019) extracts the most dominant sub-graph of the 
input graph that affects the predictions. Specifically, the sub-graph is extracted by tak-
ing N nodes that give the highest mutual information with the prediction. PGExplainer 
(Luo et al. 2020) improves on GNNExplainer by selectively choosing the sub-graph for 
the candidate explanation instead of trying all permutations of the sub-graph. GNNEx-
plainer can highlight the top-n important neighbors in explaining the existing alignment 
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models. However, it cannot extract the top-n important attributes since most of the 
existing GNN-based KG alignment models use pre-trained (or randomly initialized) 
embeddings as the node features.

Our proposed model fills this gap by providing a model that can accurately 
predict entity alignment between KGs and seamlessly provide an explanation for the 
prediction. The provided explanation is in the form of the similarity between the 
top-n features (i.e., attributes and neighbors) of the aligned entities used to compute 
the entity embeddings. Our model can highlight the top-n attributes and neighbors 
used by the model to compute the embedding of the aligned entities from two 
different KGs.

3  Proposed KG alignment model

This section first discusses the formulation of the KG alignment problem. The detail 
of the proposed solution is described in the following subsection.

3.1  Problem formulation

A KG is an extensive repository of facts, where each fact is represented as a triple. 
There are two types of a triple: an attribute triple, which represents the properties of 
entities (e.g., birth_date), and a relationship triple, which represents the relation 
between entities (e.g., spouse). An attribute triple is denoted as ⟨h, r, a⟩ , while a 
relationship triple is denoted as ⟨h, r, t⟩ . Here, h is the head entity, r is the predicate 
(i.e., the relation or the attribute key), t is the tail entity, and a is the attribute value. 
The relationship triples can be represented as a neighborhood graph G with vertices/
nodes V representing entities and edges E representing relationships.

Let GA and GB denote the two KGs to be aligned. The first objective is to find 
every pair ⟨va, vb⟩ where va ∈ GA , vb ∈ GB , and va and vb represent the same real-
world entity. The second objective is to provide an explanation for each extracted 
pair (predicted alignment). The explanation is in the form of a set of attributes 
and neighbors of each entity in the pair that can help experts decide whether the 
alignment is correct. The attributes and neighbors are selected based on their 
contribution in computing the entity embeddings. Here, only the most influential 
(e.g., top-n) attributes and neighbors are selected for the explanation. Table 3 shows 
an example of the explanation.

3.2  i‑Align

The proposed i-Align is an embedding-based KG alignment model. It uses the vector 
similarity of the entity embeddings to compute the similarity between entities from 
two different KGs. The entity embedding is computed based on attribute triples and 
relationship triples as follows.

(1)hv = [hatt
v
;hnei

v
]
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where hv denotes the entity embedding, hatt
v

 denotes the attribute embeddings (a vec-
tor computed by the attribute aggregator, Sect. 3.2.1), hnei

v
 denotes the neighborhood 

embeddings (a vector computed by the neighbor aggregator, Sect.  3.2.2), and [;  ] 
denotes a concatenation operator.

The model learns the alignment via learning close entity embeddings for the 
aligned entities. Specifically, it learns to separate the positive samples (the aligned 
entities in the seed alignment S ) from the negative sample (randomly generated) by 
a large margin. It uses a margin ranking loss Lalign defined as follows.

Here, S is a seed alignment, containing a list of aligned entity pairs from GA and 
GB , i.e., s = ⟨va, vb⟩ , that acts as positive samples. S′ is the negative samples gen-
erated by randomly changing one of the entities in each aligned entity pair of the 
seed alignment, e.g., vb is changed into v′

b
 , a random entity in GB . For one positive 

sample, i-Align takes five negative samples.1 The symbol � denotes the margin 
hyper-parameter.

i-Align is built on top of the Transformer model to exploit its self-attention mech-
anism to highlight the most important attributes/neighbors as the explanation of the 
alignment prediction. The self-attention mechanism is computationally expensive 
and may not be feasible to be applied to a large graph. Thus, i-Align decomposes the 
large graph into sub-graphs (mini-batches). It uses edge-gated attention and histori-
cal embeddings (Sect. 3.2.2), which allows i-Align to be trained over mini-batches.

The mini-batch construction is straightforward, as illustrated in Fig. 2. First, fol-
lowing Cluster-GCN (Chiang et  al. 2019), a graph clustering algorithm METIS 
(Karypis and Kumar 1998) is used to sample a small number of entities that have 
high inter-connectivity among them (denoted by blue circles in the figure) as the ini-
tial mini-batch sample. The clustering algorithm may generate different sizes of sub-
graph in the mini-batch procedure. However, this does not affect the end results of 
the performance. It may affect the number of epochs to reach the convergence of the 
model performance. If the clustering algorithm creates large graphs, it may require 
more epochs to reach convergence. Next, all attributes of these entities, i.e., the attrib-
ute triples, are extracted (denoted by green rectangles). These attribute triples are 
then sent to the attribute aggregator to be processed. Finally, all the selected enti-
ties’ first-hop neighbors (denoted by orange circles), which may not be selected in 
the sampling process, are extracted and merged into the mini-batch. This sub-graph is 

(2)Lalign =
∑

s∈S

∑

s�∈S�

max
(
0,
[
� + f (s) − f (s�)

])

(3)f (s) =
‖‖‖hva − hvb

‖‖‖

(4)f (s�) =
‖‖‖hva − hv�

b

‖‖‖

1 Since a KG consists of many entities, a larger negative sample may give a better alignment perfor-
mance but have a trade-off in the running-time performance. Existing KG alignment models use 5-10 
negative samples.
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then sent to the neighbor aggregator to be processed. The overall process of i-Align is 
illustrated in Fig. 1.

3.2.1  Attribute aggregator

The goal of the attribute aggregator is to compute the attribute embeddings hatt
v

 given 
the attribute triples in a mini-batch. For each entity in the mini-batch, the aggregator 
takes the corresponding attribute keys and values in the attribute triples. Note that 
the attribute value may be a literal (a sequence of character, i.e., l = [c1, c2, ..., cl] ), 
such as a person’s name or birth date. Thus, before combining the attribute key 
and value to compute the final attribute embeddings, the aggregator uses Gated 

Fig. 1  The proposed model consists of two main modules. The first is an attribute aggregator that aims 
to compute node representation based on the node’s attributes. The second is a neighbor aggregator that 
aims to compute node representation based on the node’s neighborhood graph structure

Fig. 2  A mini-batch sample. The blue circles indicate the initial mini-batch sample. The green rectangles 
indicate the attributes of the sampled entities. The orange circles indicate the first-hop neighbors of the 
sampled entities
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Recurrent Unit (GRU)2 Cho et al. (2014) to transform an attribute value into a literal 
embedding (Eq.  5). Next, it combines the literal embeddings and the predicate 
(attribute key) embeddings (Eq.  6) and uses self-attention (i.e., Transformer) to 
obtain the interaction between the attributes of an entity (Eq.  7–8). Formally, the 
attribute embeddings computation is defined as follows.

Here, av is the predicate (attribute key) embeddings, d denotes the dimensionality 
of the embedding xatt

v
 and W denotes learned parameters. The symbol �att denotes 

the attention weight of the attributes, which is used to generate the explanation. 
The attention aggregator uses three layers of self-attention (Eq. 7–8) with residual 
connections. Thus, the final attention weight used for explaining the attribute 
importance is the average of the attention weight from all layers.

3.2.2  Neighbor aggregator

The neighbor aggregator uses a Transformer-based Graph Encoder (Trans-GE) to 
encode a mini-batch sub-graph. Two main components of Trans-GE are edge-gated 
attention and historical embeddings. The edge-gated attention captures the structural 
information of a sub-graph. At the same time, the historical embeddings allow 
Trans-GE to approximate the full computational graph of a KG in a mini-batch.

Edge-gated Attention takes the adjacency matrix and the predicate (relation) 
embedding of the mini-batch sub-graph to learn the attribution of entity neigh-
bors. It multiplies the adjacency matrix and the relation embeddings and applies a 
sigmoid function to learn each relation’s weight (Eq. 9). This weight is used as a 
mask/gate � to control the neighbors’ influence (Eq. 10) on the self-attention com-
putation (Eq.  11–12), which also captures the similarity between relations. The 

(5)lv = GRU

(
[c1, c2, ..., cl]

)

(6)xatt
v

= tanh

(
WaavWllv

)

(7)�att = softmax

�
QattK

�

att√
d

�
, where

(8)
Qa = xatt

v

�
W�� and Ka = xatt

v

�
W��

hatt
v

= �attx
att
v

�
W��

2 A different unit, such as LSTM, can be used here. A pre-trained encoder, such as BERT, can also be 
used to improve the model’s capability to capture semantic similarity between attributes. GRU is chosen 
because it has a faster running time, with no significant drop in accuracy.
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weight is also used to update the relation embeddings for computing the gate in 
the next layer (Eq. 13). Specifically, the edge-gated attention is defined as follows.

Here, A is the adjacency matrix, rv and r′
v
 denote the current and updated relation 

embeddings, respectively, xHE are the initial node embeddings from the historical 
embeddings, and W denotes a learned parameter. The symbol �nei denotes the 
attention weight of the neighbors used to generate the explanation. Similar to 
the attribute aggregator, the neighbor aggregator uses three layers of edge-gated 
attention. The final attention weight used for explaining the neighbor importance is 
the average attention weight from all layers.

Historical embeddings are used by Trans-GE to compute the node embeddings 
xHE (Eq.  10), which is an approximation of node embeddings that capture the 
whole computational graph in a KG, i.e., it approximates the node embeddings 
computation of the message-passing mechanism in a GNN. It borrows the idea of 
GNNAutoScale (Fey et al. 2021) that defines the historical embeddings as node 
embeddings acquired in the previous training iteration, capturing the computation 
graph. However, the Trans-GE historical embeddings differ from those in 
GNNAutoScale’s as they use an approximation layer instead of the push/pull 
mechanism used by GNNAutoScale.

The push/pull mechanism of GNNAutoScale updates the historical embeddings 
whenever it computes new node embeddings in each layer so that in the next 
layer, it can pull the up-to-date node embeddings from historical embeddings. 
In contrast, the approximation layer of Trans-GE uses a linear transformation 
learned to approximate the current node embeddings based on the embeddings 
in the previous state. The advantage of using this approximation layer is that the 
back-propagation process of the training is more stable since it does not have 
disconnections in the computational graph due to the push/pull mechanism. The 
approximation layer is trained via distillation loss defined as follows.

(9)� = sigmoid

(
AWrrv

)

(10)xnei
v

= �xHE

(11)�nei = softmax

�
QneiK

�

nei√
d

�
, where

(12)
Qn = xnei

v

�

W�� and Kn = xnei
v

�

W��

hnei
v

= �neix
nei
v

�

W��

(13)r�
v
= rv + �Wr�rv
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where xHE is the embeddings approximation, x0 denotes the stored historical 
embeddings that updated every iteration, LHE is the distillation loss, and K is the 
number of layers in Trans-GE. Following GNNAutoScale, L2 regularization is 
applied to each output layer hnei,k

v
 to ensure the closeness of historical embeddings 

approximated in each layer. Lastly, another distillation loss (Eq.  16) is added to 
initialize the stored historical embeddings. The key idea is that the historical (node) 
embeddings can be approximated from attribute embeddings rather than random 
initialization.

4  Experiments

Three experiments are conducted to show the power of i-Align.3 The first two 
experiments aim to show the effectiveness of i-Align in entity alignment and 
explanation generation. The last experiment aims to show the scalability of i-Align 
to handle large KGs.

4.1  KG alignment experiments

Given two KGs, the main objective of i-Align is to provide entity alignment predic-
tion and explanation. Thus, the first experiment is conducted to measure the perfor-
mance of i-Align in entity alignment compared to the state-of-the-art KG alignment 
models. Both translation-based and GNN-based approaches are used as baselines 
for this experiment. Among the translation-based approaches, MTransE (Chen et al. 
2017), JAPE (Sun et  al. 2017), MultiKE (Zhang et  al. 2019) and AttrE (Trisedya 
et  al. 2019) are selected. MTransE and JAPE are the pioneers of the translation-
based approach, while MultiKE and AttrE are state-of-the-art. Among the GNN-
based models, GCN-Align (Wang et al. 2018), EPEA (Wang et al. xxx), MRAEA 
(Mao et al. 2020), and NMN (Wu et al. 2020) are selected. GCN-align is the pioneer 
of the GNN-based approach, while MRAEA and NMN are state-of-the-art. We used 
the suggested hyperparameters of the baseline model from their papers.

(14)xHE = Wdistx0

(15)LHE1
=

∑

v∈GA∪GB

K∑

k=1

[
1 − cos(xk

HE,v
, hnei,k

v
)

]

(16)LHE2
=

∑

v∈GA∪GB

[
1 − cos(x0, h

att
v
)

]

3 The code and datasets are available at https://bitbucket.org/bayudt/i-align.
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4.1.1  Experiment settings

Dataset: The main dataset used for the experiments is DWY-NB (Zhang et al. 2022), 
which is used to evaluate the alignment performance and the explanation quality. 
This dataset contains two pairs of KGs: DBpedia - Wikidata (DW-NB) and DBpedia 
- YAGO (DY-NB). The DBpedia KG in DW-NB contains 84, 911 entities and 545 
predicates, while the Wikidata KG contains 86,  116 entities and 703 predicates. 
There are 50, 000 aligned entities in DW-NB. The DBpedia KG in DY-NB contains 
58, 858 entities and 211 predicates, while the YAGO KG contains 60, 228 entities 
and 91 predicates. There are 15, 000 aligned entities in DY-NB. For training, 30% 
of the aligned entities are used as seed alignment S . The rest of the aligned entities 
are used for testing. We also use two additional datasets with different domains 
than the DW-NB dataset to further evaluate the alignment performance: DBP-
LGD and DBP-GEO. These datasets contain aligned entities between DBpedia and 
LinkGeoData (Stadler et al. 2012) and Geonames,4 respectively. DBP-LGD contains 
10,000 aligned entities and ten aligned predicates from a total of 510 predicates, and 
DBP-GEO contains 10,000 aligned entities and ten aligned predicates from a total 
of 716 predicates.

Hyper-parameters: We use grid search to find the best hyper-parameters for 
the models. We choose the network dimensionality among {128, 256, 512} , the 
character embedding dimension among {16, 32, 64, 128} , the attribute and entity 
embedding dimension among {128, 256, 512} , the number of transformer layer 
among {2, 3, 4, 5} , the number of multi-head attention among {4, 8, 12} , and the 
margin � among {1, 5, 10}.

The optimum hyper-parameters are as follows. Network hidden dimension is 256, 
character embedding dimension is 64, attribute and entity embeddings dimension are 
256, the number of layers of the attributes (Transformer) and neighbor aggregators 
(Trans-GE) is 3, the number of heads in the multi-head attention is 8, margin loss 
� = 1 . When using a lower number than the one listed here, the performance of the 
model significantly drops. Meanwhile, using a higher number does not increase the 
performance significantly. Thus, we chose these hyper-parameters to get optimal 
results while having a good running time performance. The model performance 
stabilizes after 400 epochs of training.

Metric: The metric used to evaluate the performance is Hits@k, e.g., Hits@1 and 
Hits@10. It is the standard evaluation metric for KG alignment Zhang et al. (2022). 
Hits@k indicates the percentage of entities with the correct aligned entity listed in 
the top-k prediction.

4.1.2  Results

Table 1 shows the comparisons of i-Align with the baseline. MTransE, JAPE, and 
GCN-Align achieve lower performance (i.e., below 25% in terms of Hits@1 ) since 

4 http://www.geonames.org/ontology/
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they overlook entities’ attributes. Specifically, MTransE and GCN-Align ignore the 
attributes, while JAPE masks the attributes into their corresponding data types (e.g., 
integer, string, etc.). MRAEA and NMN exploit the attribute label (among the other 
entity attributes) and achieve substantial improvements. This shows that the attribute 
label is an important feature for the task. A more detailed discussion is provided in 
Sect. 4.2.

The top three models are MultiKE, AttrE, and i-Align. Specifically, i-Align 
achieves the highest score among them: 89.42 and 92.14 in terms of Hits@1 on 
DW-NB and DY-NB datasets, respectively. The three models exploit all entities’ 
attributes, which boosts their performance. AttrE has a slightly higher Hits@10 
score as it uses a more complex n-gram model as opposed to GRU used by i-Align 
for computing the literal embeddings. The proposed i-Align has a further advantage 
compared to MultiKE and AttrE. It can also generate an explanation for each 
alignment prediction to help experts decide its correctness. This can help maintain 
the high quality of the resultant KG in the KG enrichment process.

4.2  Alignment explanation experiments

This experiment aims to evaluate i-Align in generating alignment prediction 
explanations. Here, the explanation is in the form of a set of the most influential 
attributes and neighbors for computing the entity embeddings. Specifically, top-5 
attributes and neighbors that have the highest attention weight computed by the 
attribute aggregator (Sect. 3.2.1) and neighbor aggregator (Sect. 3.2.2), respectively, 
are extracted as the explanation.

4.2.1  Experiment settings

Baseline: GNNExplainer (Ying et al. 2019), the state-of-the-art explanation model 
of GNN, is used as a strong baseline. The explanation generated by GNNEx-
plainer is in the form of a small sub-graph with the highest mutual information. 
Here, GNNExplainer is coupled with GCN-Align (Wang et al. 2018). GCN-Align 

Table 1  Comparisons of KG alignment models performance

Model DW-NB DY-NB LGD-DBP GEO-DBP

Hits@1 Hits@10 Hits@1 Hits@10 Hits@1 Hits@10 Hits@1 Hits@10

MTransE 7.88 25.75 0.08 0.68 33.59 35.76 33.14 34.75
JAPE 12.57 19.96 1.4 3.27 33.47 34.42 33.35 34.27
GCN-Align 24.76 48.52 24.36 53.43 48.57 52.74 46.12 51.32
MRAEA 81.54 85.97 73.71 78.52 78.98 83.13 72.11 75.32
NMN 84.03 88.21 75.87 80.54 78.88 82.35 75.87 80.18
MultiKE 84.06 90.05 84.97 90.84 83.12 90.55 79.33 85.22
AtrrE 87.98 95.8 90.44 94.23 84.17 92.05 86.91 92.32
Proposed 88.35 94.22 91.21 93.44 87.21 94.22 88.87 93.87
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is chosen because it purely uses GCN (Kipf and Welling 2017) so that it can be 
straightforwardly combined with GNNExplainer. This combination is adapted to 
compute five neighbors with the highest mutual information to compute the entity 
embeddings for alignment prediction. We emphasise that the combination of GCN-
Align and GNNExplainer can only generate the neighbor set, while i-Align can gen-
erate both the attribute and neighbor sets.

Protocol: For this experiment, the dataset used is DW-NB. Fifty random samples 
for correct and incorrect prediction are collected (100 samples in total). We man-
aged to get three annotators. The three annotators have studied artificial intelligence 
and machine learning for over ten years. They also closely work with knowledge 
graphs in the last three years. These three annotators are given two binary (yes/no) 
questions for each sample.

For the first question, the annotators are given an attributes/neighbors set (the 
explanation generated by the models, Table 3), and they need to indicate whether 
this set belongs to a correctly aligned entity pair. The second question asks the 
annotators whether they are sure with their answer to the first question. Three 
models compared for this experiment are GCN-Align+GNNExplainer, i-Align with 
only neighbors set explanation, and the proposed full i-Align. Each annotator is 
given the same 300 samples (randomly ordered), i.e., 100 samples for each model. 
The data given to the annotators is only the explanation, with no indication which 
model the sample belongs to. The metrics used for this evaluation are precision 
and confidence. Precision is the percentage of the correct answers (i.e., whether the 
given set belongs to a correct aligned entity pair) made by the annotators, while 
confidence is the number of answers where the annotators are sure of their answers. 
Fleiss’ Kappa score is used to show the inter-rater agreement.

4.2.2  Results

Table 2 shows the results. Overall, i-Align achieves 0.95 and 0.90 in terms of pre-
cision and confidence, respectively, which are the highest scores among the tested 
models. The inter-rater agreement score is 0.81 based on Fleiss’ Kappa, which indi-
cated high agreement between the annotators. Providing both the influential attrib-
utes and neighbors benefits i-Align, which is shown by the substantial improvement 

Table 2  Manual evaluation of 
alignment explanation

Model Correct 
prediction

Incorrect 
prediction

Prec Conf Prec Conf

GCN-Align (Wang et al. 2018) 0.39 0.47 0.80 0.75
+ GNNExplainer (Ying et al. 2019)
i-Align 0.68 0.71 0.87 0.81
(Neighbors only)
i-Align 0.95 0.90 0.93 0.93
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compared to when only the neighbors set of i-Align or even the baseline (i.e., the 
combination of GCN-Align and GNNExplainer) is used. Table 3 shows the top-5 
attributes/neighbors of a wrong alignment prediction (i.e., i-Align aligns the entity 
Carl Ferdinand Cori with Ferdinand I of Bulgaria, while GCN-
Align aligns it with Tomáš Cihlár). Here, i-Align provides a more comprehen-
sive explanation by providing both the attribute and neighbor alignment. In con-
trast, GCN-Align+GNNExplainer can not provide attribute alignment as they only 
use structural information for computing the entity alignment. The comprehensive 
explanation by i-Align makes the curation process (i.e., deciding whether the given 
sample is an incorrect alignment prediction made by the model) a lot easier.

4.2.3  Discussion

To further analyze the alignment explanation, a semi-automatic evaluation is 
performed as follows. For each tested model, 100 random correct alignment 
predictions are collected along with their explanations (a set of influential attributes/
neighbors). Next, the explanations are pre-processed by manually changing the 
attributes/relations and attribute values/entity tails that refer to the same meaning, 
e.g., the attribute full_name and name are changed into name. Finally, Jaccard 
similarity is used to compute the set similarity. A higher score means more of the 
same attributes/neighbors listed in the set.

The results in Table 4 confirm the manual evaluation where i-Align provides a 
better explanation than the baseline. The results show that i-Align achieves a higher 
set similarity score, meaning that i-Align shows more aligned attributes/neighbors 
to explain a correct alignment prediction. This can help experts to decide the cor-
rectness of the prediction easily. Further, i-Align is more efficient in runtime perfor-
mance. In the KG alignment setting, the combination of GCN-Align and GNNEx-
plainer is expensive. It needs to compute all the permutations of neighbors to find 
the maximum mutual information. Moreover, for each permutation, it needs to rec-
ompute the embeddings and the alignments.

4.2.4  i‑Align Behavior

Another analysis is performed to investigate the behavior of i-Align, specifically, the 
effect of removing attributes/neighbors. The proposed model is run five times, and 

Table 4  Automatic evaluation 
of alignment explanation

Model Jaccard similarity

Attributes Neighbors

GCN-Align (Wang et al. 
2018)

N/A 0.26

+ GNNExplainer (Ying 
et al. 2019)

i-Align 0.48 0.34
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for each run, the most influential attributes (or neighbors) are selected based on their 
attention weight. For the next run, the selected attributes (or neighbors) are removed 
from the entities, and the entity embeddings are computed based on the remaining 
attributes (or neighbors) for predicting the alignments. All attributes (or neighbors) are 
removed for the last run, i.e., the model will run based on attributes or neighborhood 
only. For analysis, 100 aligned entity pairs that are correctly predicted in all runs are 
collected. This is done to see the change of feature importance used to make the cor-
rect prediction. The metrics used for this evaluation are Hits@1 (computed based on 
all test data) and Jaccard similarity score (computed based on the sampled test data).

Figure 3 shows the effect of attributes/neighbors removal on the model’s perfor-
mance for entity alignment. As expected, removing influential attributes/neighbors 
decreases the model’s performance. The removal of attributes is more significantly 
affects the model’s performance. Removing all attributes drops the performance 
below 40% . In comparison, the model’s performance is still above 70% when remov-
ing all the neighbors. The most significant drop occurs in the second run when 
removing the most influential attributes. In most cases ( 97% ), the most influential 
attribute is the entity name. This is in line with recent findings (Zhang et al. 2022), 
which show that entity name becomes a dominant feature in KG alignment.

Figures 4 and 5 show the effect of attributes/neighbor removal on the importance 
of attributes/neighbors by the model. In general, removing an influential attribute 
increases the model’s attention to neighborhood similarity and vice versa. Inter-
estingly, removing entity name, which is the dominant feature, increases both the 
attribute and neighbor similarity, i.e., more aligned attributes/neighbors found in the 
generated explanation. This means the model tries to find more evidence when there 
is no dominant feature.

Fig. 4  The effect of attribute 
removal on set similarity

Fig. 3  The effect of attributes/
neighbors removal on alignment 
performance
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Fig. 5  The effect of neighbor 
removal on set similarity

4.3  Scalability

The last experiment evaluates the scalability of the proposed model. GNN-based KG 
alignment models have been shown to be effective in capturing both attributes and 
neighbors/graph structural similarity. However, the existing GNN-based models are 
constrained by memory usage when aligning large KGs. The proposed i-Align handles 
this problem by using historical embeddings.

The datasets used for this experiment are DW300K and DW600K (Zhang et  al. 
2022), which are three times and six times bigger than DW-NB, respectively. The base-
lines for this experiment are AttrE (Trisedya et al. 2019) and MultiKE (Zhang et al. 
2019). They belong to the translation-based models. No GNN-based models are used 
as a baseline since they cannot run on the machine used for experiments because of 
out-of-memory error. The workstation used for this experiment has a 2.20GHz proces-
sor, 128GB main memory, and a GPU with 32GB memory.

Table 5 shows the scalability experiments result. The proposed i-Align achieves bet-
ter performance than the baseline with a reasonable running time. The results show the 
power of i-Align in the effectiveness and practicality of aligning large KGs. Specifi-
cally, this confirms the effectiveness of the historical embeddings of i-Align. Note that 
the baseline is Translation-based models that cannot produce explanations for align-
ment prediction.

Table 5  Scalability experiments results

Model DW300K DW600K

Hits@1 Running time Hits@1 Running time

(days) (days)

AttrE (Trisedya et al. 2019) 70.59 5.6 61.22 10.9
MultiKE (Zhang et al. 2019) 69.56 6.0 61.42 11.5
i-Align 72.26 5.9 63.37 11.2
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5  Conclusion and future work

This paper proposed i-Align, an interpretable KG alignment model. The main 
advantage of i-Align over the existing KG alignment models is that it provides an 
explanation for each alignment prediction made. This explanation can help experts 
in the curation process to merge KGs by providing an explanation of proposed align-
ment predictions. Thus, it helps maintain the high quality of the enriched KG. The 
proposed model has two components: attribute aggregator and neighbor aggregator. 
The attribute aggregator uses the standard Transformer, while a novel Transformer-
based Graph Encoder (Trans-GE) is proposed for the neighbor aggregator. Trans-GE 
uses Edge-gated Attention that combines the adjacency matrix and the self-attention 
matrix to learn a score as a gate to control the information aggregation from the 
neighboring entities. It also uses historical embeddings, allowing Trans-GE trained 
over mini-batches/small sub-graphs to address the scalability issue when encoding 
a large KG. The attention mechanisms of the attribute and neighbor aggregators are 
used to compute the attention weight to highlight the important attributes and neigh-
bors, respectively. Experimental results show the model’s effectiveness for aligning 
KGs, the quality of the generated explanations, and the practicality for aligning large 
KGs.

The proposed i-Align uses attention weights as the primary indicator of the 
importance of attributes/neighbors. This is a simple yet effective technique. One 
limitation of i-Align is that it uses attribute literal similarity. So, it may not per-
form well on cross-lingual knowledge graph alignment, where the literal attributes 
are written in different characters. The other interesting topics for future work are: 
an integration to a more advanced technique, such as attention rollout (Chefer et al. 
2021), which can be explored to improve the explanation quality; explainability in 
GNNs is an emerging research topic and worth exploring to improve i-Align.
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